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Consider a function f : Rd → R which is strongly convex, smooth, twice differentiable and second order smooth.
We are interested in minimizing f by steepest descent using its second order derivatives. Newton’s method can
be viewed as minimizing the second order approximation of the function at every iterate. Because f is twice
differentiable and has smooth second derivatives, one can consider its Taylor series approximation till the second
order term to directly and minimize the approximation hoping to also minimize the true function f since the second
order derivatives are smooth.

arg min
∆x∈Rd

f(x + ∆x) ≈ arg min
∆x∈Rd

{
f(x) + 〈∇f(x),∆x〉+

1

2

〈
∆x,∇2f(x)∆x

〉}
= −∇2f(x)−1∇f(x) (0.1)

The Newton step therefore has a closed form expression that can be computed given access to the second order
derivatives of f . ∆x is essentially the steepest descent made according the the norm ‖·‖∇2f(x) at x. The decrease
in the function value is therefore

f(x)− min
∆x∈Rd

{
f(x) + 〈∇f(x),∆x〉+

1

2

〈
∆x,∇2f(x)∆x

〉}
=

1

2

〈
∇f(x),∇2f(x)−1∇f(x)

〉
(0.2)

Since f is strongly convex, the decrease is strictly positive. The Newton’s algorithm is therefore an iterative
application of this update.

1 Setup

The function f : Rd → R is assumed to satisfy

• Strong convexity and Smoothness: ∃ µ,L ∈ R++ 3 µ ≤ L,LI � ∇2f(x) � µI ∀ x ∈ Rd, and

• Second order smoothness: ∃ ρ ∈ R++ 3
∥∥∇2f(x)−∇2f(y)

∥∥
2
≤ ρ. ‖x− y‖2 ∀ x,y ∈ Rd.

The second order smoothness parameter ρ essentially controls how well can the function f be approximated by its
quadratic approximation.

Algorithm 1: Newton’s algorithm
(
x1, ε, {ηt}t∈N

)
for t = 1, 2, . . . do

λ2
t = ∇f(xt)

T∇2f(xt)
−1∇f(xt)

if λ2
t/2 < ε then
return xt

end
xt+1 = xt − ηt∇2f(xt)

−1∇f(xt)
end
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2 Analysis

The analysis of the Newton’s method can be broken down into two phases - damped and quadratically convergent,
which we will see why.
For an parameter γ > 0, which we will choose later, assume that in the damped phase ‖∇f(x)‖2 ≥ γ. From strong
convexity of f , we have

f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖22

= f(xt)− ηt
〈
∇f(xt),∇2f(xt)

−1∇f(xt)
〉

+
Lη2

t

2

∥∥∇2f(xt)
−1∇f(xt)

∥∥2

2

≤ f(xt)−
(
ηt −

Lη2
t

2µ

)
λ2
t (Using strong convexity of f , and definition of λ2

t in Algorithm 1). (2.1)

Setting ηt = µ
L , Equation (2.1) becomes

f(xt+1) ≤ f(xt)−
µ

2L
λ2
t

≤ f(xt)−
µ

2L2

∥∥∇2f(xt)
∥∥2

2

(
Since L−1I � ∇2f(xt)

−1
)

≤ f(xt)−
µ

2L2
γ2. (2.2)

Let x∗ be the minimizer of f . And since the decrease in the function value is at-least a constant, the number of

iterations cannot exceed 2L2(f(x0)−f(x∗))
γ2µ .

Now, let us considering the quadratically convergent phase when ‖∇f(xt)‖2 < γ. Let ∆t := −∇2f(xt)∇f(xt), then∥∥∇2f(xt + ηt∆t)−∇2f(xt)
∥∥

2
= ηtρ ‖∆t‖32 (From second order smoothness of f)

=⇒ ∆T
t

(
∇2f(xt + ηt∆t)−∇2f(xt)

)
∆t ≤ ηtρ ‖∆t‖32 . (2.3)

Consider f along the direction ∆t from xt as a new function g(ηt) := f(xt+ηt∆t). Clearly, ∇2g(ηt) = ∆T
t ∇2f(xt+

ηt∆t)∆t, ∇2g(0) = λ2
t , and ∇g(0) = −λ2

t . Now Equation (2.3) is nothing but

∇2g(ηt) ≤ ∇2g(0) + ηtρ ‖∆t‖32
= λ2

t + ηtρ ‖∆t‖32

≤ λ2
t + ηtρ

λ3
t

µ3/2
. (2.4)

Integrating Equation (2.4) twice, we get

g(ηt) ≤ g(0)− ηtλ2
t +

η2
t

2
λ2
t +

η3
t ρ

6µ3/2
λ3
t . (2.5)

Setting ηt = 1, Equation (2.5) becomes

f(xt+1) ≤ f(xt)− λ2
t

(
1

2
− ρ

6µ3/2
λt

)
. (2.6)

From the definition of λt, we have

λ2
t = ∇f(xt)∇2f(xt)

−1∇f(xt)

≤ 1

µ
‖∇f(xt)‖22

=⇒ λt ≤
‖∇f(x)‖2
µ1/2

. (2.7)

Using Equation (2.5) in Equation (2.6), we get

f(xt+1) ≤ f(xt)− λ2
t

(
1

2
− ρ

6µ2
‖∇f(xt)‖2

)

2



< f(xt)− λ2
t

(
1

2
− ρ

6µ2
γ

)
. (2.8)

Setting γ ≤ 3µ2

2ρ , Equation (2.8) becomes

f(xt+1) < f(xt)−
1

4
λ2
t

= f(xt)−
1

4
∇f(xt)∇2f(xt)

−1∇f(xt). (2.9)

Therefore, setting ηt = 1 ensures a positive decrease in the function value. Using the second order smoothness
condition, we can bound the gradient at the next step as

‖∇f(xt+1)‖2 =
∥∥∇f(xt+1)−∇f(xt)−∇2f(xt)∆t

∥∥
2

=

∥∥∥∥∥∥
ηt=1∫
ηt=0

(
∇2f(xt + ηt∆t)−∇f(xt)

)
∆tdηt

∥∥∥∥∥∥
2

≤ ρ

2
‖∆t‖22

=
ρ

2

∥∥∇2f(xt)
−1∇f(xt)

∥∥2

2

≤ ρ

2µ2
‖∇f(xt)‖22 . (2.10)

Therefore if γ = µ2

ρ ensures the shrinkage of gradient norms in Equation (2.10). We now have the recurrence

ρ

2µ2
‖∇f(xt+1)‖2 ≤

(
ρ

2µ2
‖∇f(xt)‖2

)2

. (2.11)

Applying Equation (2.11) recursively for we have that for T ≥ t,

ρ

2µ2
‖∇f(xT )‖2 ≤

(
ρ

2µ2
‖∇f(xt)‖2

)2T−t

≤
(

1

2

)2T−t

. (2.12)

From the strong convexity of f , we have

f(x∗) ≥ f(xt) + 〈∇f(xt),x
∗ − xt〉+

µ

2
‖x∗ − xt‖22

≥ min
y∈Rd

{
f(xt) + 〈∇f(xt),y − xt〉+

µ

2
‖y − xt‖22

}
= f(xt)−

1

2µ
‖∇f(xt)‖22 . (2.13)

Using Equation (2.13) in Equation (2.12) we get

f(xT )− f(x∗) ≤ 1

2µ
‖∇f(xt)‖2 ≤

2µ3

ρ2

(
1

2

)2T−t

. (2.14)

Therefore, for T = lg lg 2µ3

ρ2ε , we have f(xT ) − f(x∗) ≤ ε. Therefore by adding the iterations required in the two
phases, we get a total of

2L2ρ2

µ5
(f(x0)− f(x∗)) + lg lg

2µ3

ρ2ε
(2.15)

iterations. It is to note that if ‖∇f(x0)‖2 ≤
µ2

ρ , then the algorithm doesn’t have to go through the first phase and
the rate of convergence is purely quadratic which makes the effective iteration complexity to be

2L2ρ2

µ5
(f(x0)− f(x∗))1

(
‖∇f(x0)‖2 >

µ2

ρ

)
+ lg lg

2µ3

ρ2ε
. (2.16)
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