
Nesterov’s Acceleration

Raghav Somani

January 9, 2019

This article contains a summary and survey of the Nesterov’s accelerated gradient descent method and some in-
sightful implications that can be derived from it.

The oracle in consideration is the first order deterministic oracle where each query is a point x ∈ Rd in the space, and
the oracle outputs a tuple of vectors (f(x), g(x)), where g(x) ∈ ∂f(x) for a continuous function f : Rd → R. The
dynamics of acceleration can be understood precisely if we consider the right and “easy” model - convex quadratic.
Therefore we first consider our optimization function to be the loss function of the naive linear regression problem.

f(x) =
1

2n
‖Ax− b‖22 (0.0.1)

where A ∈ Rn×d and b ∈ Rn. The goal is to converge to the optimal solution to the convex problem x∗. We assume
that the function f is strongly convex, i.e., ∇2f(x) � 0.

f(x) =
1

2n

[
xTATAx− 2xTATb + ‖b‖22

]
∇f(x) =

1

2n

[
2ATAx− 2ATb

]
∇2f(x) =

1

n
ATA

Let us denote the Hessian of the function f as Σ. The assumption therefore requires the least eigenvalue of the
matrix Σ to be positive. Since every symmetric matrix has an eigenvalue decomposition, therefore let the same for
Σ be

Σ = QΛQT (0.0.2)

where Λ = diag(λ1, λ2, . . . , λd) is the eigenvalues matrix with λ1 > λ2 > · · · > λd being the eigenvalues of Σ. The
matrix Q contains the eigenvectors of Σ and is an orthogonal matrix.
To appreciate acceleration, we first analyze the naive gradient descent method for the convex quadratic optimization
problem (0.0.1).

1 Gradient Descent

Gradient Descent is a greedy, cheap and a locally optimal way to decrease a convex function’s value is to iteratively
move in a negative sub-gradient direction. Algorithmically, we start at an initial iterate x0 and the (t+ 1)th update
rule is written as

xt+1 = xt − ηtgt (1.0.1)

where gt ∈ ∂f(xt) and ηt is the step-size. Notice that we can write f(x) as

f(x) =
1

2
xTΣx− 1

n
bTAx +

1

2n
‖b‖22

∇f(x) = Σx− 1

n
ATb

Define y := 1
nATb, so we have ∇f(x) = Σx− y. By equating the gradient to 0, we have a closed form solution of

the problem, x∗ = Σ−1y. The inverse of Σ exists because of the fact that it is positive definite.

1



1.1 Decomposition of parameter error

The gradient at a point xt can be written as gt = Σ(xt − x∗). Plugging this expression of the gradient in the
gradient descent step equation (1.0.1), we get

xt+1 = xt − ηtΣ(xt − x∗)

xt+1 − x∗ = xt − x∗ − ηtΣ(xt − x∗) (1.1.1)

The vector xt − x∗ denotes the position of xt from x∗ in the canonical basis. Let us view the same dynamics from
the eigenbasis of Σ. For this, we do a basis transformation and define zt = QT (xt − x∗) ∀ t ≥ 0. Multiplying
Equation (1.1.1) with QT from the left, we obtain

QT (xt+1 − x∗) = QT (xt − x∗)− ηtQTΣ(xt − x∗) (1.1.2)

Using the eigen-decomposition of Σ as in (0.0.2) and the definition of zt, we can re-write (1.1.2) as

zt+1 = zt − ηtQTQΛQT (xt − x∗)

= zt − ηtΛzt (1.1.3)

Each component of the vector zt denotes the “closeness” of the iterate xt in each eigenvector direction, and from
(1.1.3) we have a closed form expression of the same

z
(i)
t+1 = z

(i)
t − ηtλiz

(i)
t

= (1− ηtλi)z(i)t
= (1− ηλi)t+1z

(i)
0 (for ηt = η ∀ t ≥ 0) (1.1.4)

This shows that for ηt ≤ 1
λ1

, along each eigenvector direction, gradient descent converges geometrically with a
factor that is linear in the corresponding eigenvalue. Therefore for eigen-directions with high eigenvalues, we have
a good geometric progress, and for eigen-directions with low eigenvalues, we have poorer geometric progress. This
proportionate dependence of eigenvalues on the geometric contraction level of progress is the reason why gradient
descent are hugely dependent on the underlying geometry of the optimization landscape. The same phenomenon
can be seen in the function values. Let us see how.

1.2 Decomposition of function error

Since f(x) is a quadratic convex function, the Taylor expansion of f(x) up to the second term is exact representation
of the function value. Therefore let us look at the Taylor series expansion of f(x) at the optimum point x∗. We
use the fact that the gradient of f at x∗ is 0 and therefore the sub-optimality gap of a point x comprises of just
one term.

f(x)− f(x∗) =
1

2
(x− x∗)T∇2f(x∗)(x− x∗)

=
1

2
(x− x∗)TΣ(x− x∗) (1.2.1)

We can break the sub-optimality gap in (1.2.1) along each eigen-vector direction and analyze its convergence
separately along each direction. Using the eigen-basis transformation zt = QT (xt − x∗), we can re-write (1.1.4) as

f(xt)− f(x∗) =
1

2
(xt − x∗)TQΛQT (xt − x∗)

= zTt Λzt

=

d∑
i=1

λi(z
(i)
t )2

=

d∑
i=1

λi(1− ηλi)2t(z(i)0 )2 (1.2.2)

As we see, again the sub-optimality gap depends aggressively on the magnitude of the eigenvalue along each eigen-
direction.

As we shall see, the dependence of eigenvalues on the convergence of iterates along each eigen-direction will be less
severe when we analyze the same optimization problem but using the Nesterov style update.

2



2 Nesterov’s Accelerated Gradient Descent

Nesterov’s accelerated gradient descent on the other hand is not locally greedy, cheap algorithm which achieves
convergence rates that match the lower bound iteration complexity for convex objectives. Algorithmically, we start
with two iterates x0 and y0 such that x0 = y0 and the (t+ 1)th update rule can be written as

xt+1 = yt − α∇f(yt) (2.0.1a)

yt+1 = xt+1 + β(xt+1 − xt)

= (1 + β)xt+1 − βxt (2.0.1b)

For our linear regression problem, the updates rules take the form

xt+1 = yt − αΣ(yt − x∗) (2.0.2a)

yt+1 = (1 + β)xt+1 − βxt (2.0.2b)

Or if we subtract x∗ on both sides of both the update equations, we get

xt+1 − x∗ = yt − x∗ − αΣ(yt − x∗)

= (I− αΣ)(yt − x∗) (2.0.2c)

yt+1 − x∗ = (1 + β)(xt+1 − x∗)− β(xt − x∗)

= (1 + β)(I− αΣ)(yt − x∗)− β(xt − x∗) (2.0.2d)

Just like as we did in the Gradient Descent analysis, we look at these update equations from the eigen-basis by
performing a basis transformation. So we define ut := QT (xt − x∗) and vt := QT (yt − x∗) ∀ t > 0 and multiply
(2.0.2c) and (2.0.2d) by QT from the left thus obtaining

QT (xt+1 − x∗) = QT (yt − x∗)− αQTΣ(yt − x∗)

ut+1 = vt − αQTQΛQT (yt − x∗)

= vt − αΛvt

= (I− αΛ)vt (2.0.3a)

QT (yt+1 − x∗) = (1 + β)QT (I− αΣ)(yt − x∗)− βQT (xt − x∗)

vt+1 = (1 + β)(I− αΛ)vt − βut (2.0.3b)

Now that we have the transformed update equations, we can closely look at the dynamics of these vectors along
each eigen-vector direction.

u
(i)
t+1 = (1− αλi)v(i)t ∀ i = 1, 2, . . . , d (2.0.4a)

v
(i)
t+1 = (1 + β)(1− αλi)v(i)t − βu

(i)
t ∀ i = 1, 2, . . . , d (2.0.4b)

Observing closely, we can find that equations (2.0.4a) and (2.0.4b) form a 2-dimensional vector update. Precisely,[
u
(i)
t+1

v
(i)
t+1

]
=

[
0 (1− αλi)
−β (1 + β)(1− αλi)

][
u
(i)
t

v
(i)
t

]
∀ i = 1, 2, . . . , d (2.0.5)

For simplicity, lets define pit :=

[
u
(i)
t

v
(i)
t

]
, and Ri(α, β) :=

[
0 (1− αλi)
−β (1 + β)(1− αλi)

]
The update equation can be re-written as

pit+1 = Ri(α, β)pit

= Rt+1
i (α, β)pi0 (2.0.6)

Geometrically we can think of the update equation (2.0.6) as a linear map applied to consecutive error iterates pit.
By analyzing the eigenvalues of the matrix Ri(α, β) we can argue about the decaying nature of the error vector.

For the choice of α = 1
λ1

and β =
√
λ1−
√
λd√

λ1+
√
λd

, we get that the eigenvalues of he matrix are of the form rie
±ιθi where

ri =

(
1− λi

λ1

)(√
λ1 −

√
λd√

λ1 +
√
λd

)
(2.0.7a)

3



θi = tan−1

(√
λi − λd
λ1 − λi

)
(2.0.7b)

Therefore the matrix Rt+1
i (α, β) has eigenvalues of the form rt+1

i e±ι(t+1)θi . Therefore we clearly see that the error
vector converges because the eigenvalues decay geometrically.

A geometric illustration of the decaying behavior of the eigenvalues of the matrix Rt+1
i (α, β) can be seen in the

figure below.

Figure 1: The curve of eigenvalues corresponding to +θi, of the operator R20
i (α, β), on the complex plane parame-

terized by t = λi ∈ [λd, λ1].

From figure 1 and equation (2.0.7a), it is evident that error vectors which are in the direction of higher eigenvalues
of Σ converge much faster compared to that in the direction of lower eigenvalues.

From (1.1.4) we have seen that the main reason why gradient descent has a slow convergence is because the decay
of the component of the error vector in the direction of the eigenvector with the least corresponding eigenvalue is
the slowest due to the small value of λd. Analyzing equation (2.0.6) for i = d, we have both the eigenvalues of the

matrix Rd

(
1
λ1
, β
)

equal to 1−
√
λd√
λ1

.

Through these optimal values of α and β, we can see that the error iterates along the least eigenvalue direction

converges to 0 via a linear operator with eigenvalues 1−
√
λd√
λ1

instead of 1− λd

λ1
that we saw for the gradient descent

case.

4


	Gradient Descent
	Decomposition of parameter error
	Decomposition of function error

	Nesterov's Accelerated Gradient Descent

