A survey on Large Scale Optimization

Raghav Somani
University of Washington
raghavsomanil9950gmail.com & raghavs@cs.washington.edu

March 12, 2020

Contents

1 Definitions 3
1.1 Convex SetS . . . v v v v i e e e e e e e 3
1.1.1 Properties o e e e 3

1.1.2 Examples o e e e e e e e e 3

1.2 Convex functions L e e e 3
1.2.1 Properties o L o e e e e e e e 3

1.2.2 Examples e e e e e e e e e e e 4

1.3 Strongly Convex functions e 4
1.3.1 Properties o e e e e e e e e e 4

1.4 Smooth functions L e 5
1.4.1 Properties o o o e e e e e e 5

1.5 Condition number oL e e 6
1.6 Fenchel Conjugate e e 6
1.6.1 Properties L e e e e 6

1.6.2 Examples L e e e e e e e 6

1.7 Sub-gradients e e 6
1.7.1 Properties o o e e e e e e e 7

1.7.2 Examples L e e e 7

1.8 Projection operator e e 7
1.8.1 Properties o e e e e e e 7

1.9 Fermat’s rule, Normal Cone and first order condition 7
1.10 Lagrangian Dual problem o . e 8
111 KKT Conditions v v it e e e e e e e e 8
1.12 Stationary points oL e e e e e 9

2 Lower bounds on gradient based methods 9
3 Sub-gradient method 9
3.1 General convex functions e 9
311 CONVETZENCE . . v v v v v e i e e e e e e e e e e e e e e 10

3.2 Strongly convex functions L Lo L e 10
3.2.1 CONVEIZENCE . v v v v v i it e i e e e e e e e e e 10

3.3 Smooth functions e e e 11
3.3. 1 CONVEIZENCEe . . v v v v vttt s e e e e e e e e e e 11

3.4 Smooth and Strongly convex functions oL oL L 12
3.4.1 CONVEIZENCE . . v v v v vt it e i s e e e e e e e 13

4 Projected Sub-gradient method 13
5 Proximal Gradient Descent 14
5.1 Proximity operator L e 14

5. 1.1 Examples : L e e 14

5.1.2 Understanding the operator L 15

5.2 CONVEIZENCE . . v v v v v et et e e e e e e e e e e e e 15

6 Conditional Gradient method (Frank Wolfe algorithm) 16
6.1 CONVErence v v vt e e e e e 16
6.2 Examples e e e e e 17

7 Stochastic Gradient Descent 17
7.1 General convex functions L Lo e 18
711 CONVErgeNCe . . v v v v v v it e e e e e e e e e e e 18

7.2 Strongly convex functions e e 19
7.2.1 Convergence with uniform averaging L o e 19

7.2.2 Convergence with weighted averaging L o 20

7.2.3 Convergence of last iterate L L 21

7.2.4 Convergence using Tail Averaging

7.3 Smooth functionso
7.3. 1 CONVEIZENCE . . v v v v vttt e et e e e e
7.4 Smooth and Strongly convex functions
741 CONVEIZENCE . . v v v v vttt et e e e e e e e e
7.4.2 Convergence of Bias and Variance o

Some faster stochastic algorithms

8.1 Stochastic Variance Reduced Gradient (SVRG) o o
8.1.1 CONVErgence v v v v vt i e e e e e e e
8.2 SVRGHH . . e
8.2.1 CONVEIZENCE . . v v v v vt it e e e e e e e e e

Non convex Gradient method
9.1 CONVErZENCE .+ .« v v v vt e

10 Non convex Stochastic Gradient method

10.1 CONVETZENCE « . v v v v v e e it e e e e e e e e e e e e

11 Faster Non convex Stochastic algorithms

11.1 COnVErgence« v v v v v et et e e e e e e e e e e

24
24
25
26
27

30
30

30
30

32

Abstract

A very important aspect of Machine Learning is Optimization, therefore to have the best results one requires

fast and scalable methods before one can appreciate a learning model. Such algorithms involve minimization of
a class of functions f(x). The set of its minimizers usually do not have a closed form solution, or even if they
have, computing them is expensive in both memory and computation time. Here is where iterative methods
turn up to be easy and handy. Analyzing such algorithms involve mathematical analysis of both the function to
optimize and the algorithm.
This article contains a summary and survey of the theoretical understandings of Large Scale Optimization by
referring some talks, papers, and lectures like [11, 1, 9, 8] and more, that I have come across in the recent. I
hope that the insights of the working of these optimization algorithms will allow the reader to appreciate the
rich literature of large scale optimization methods.

1 Definitions

Before diving into some commonly used and theoretically promising algorithms, we will first understand some
necessary basic concepts. The below set of definitions might not appear well connected in the beginning but are
important and most of them will blend in when we will start analyzing different algorithms.

1.1 Convex sets

In a Euclidean space, a convex set contains all the convex combinations of its points. That is, C is a convex set if
for all x1,X2,...,%, €C, Y i a;x; €CYVa; >0and >, a; =1.

1.1.1 Properties

n
1. If C1,Cs, ... ,C, are convex sets then [C; is also a convex set.
i=1

1.1.2 Examples
1. Convex hull and Convex Cone of a set S is convex.
2. Hyperplanes {x | aT’x = b} a # 0, and Half-spaces {x | a’x <b} a#0
3. Euclidean ball : B(x.,r) ={x | ||x — x| <r} ={x+ru| ||ul| <1}
4. Polyhedra : {x| Ax <b,Cx =d}

1.2 Convex functions

Let C be a convex set and f: C — R. Then f is convex if

Vxi,x€C, Vte|0,1]: fx14+ (1 —8)x2) <tf(x1)+ (1 —1)f(x2)

1.2.1 Properties

1. Tangent at all points are under-estimators of the function. That is
f) 2 fx)+(Vfx),y—x) Vxyel

2. If f is twice differentiable then V2 f(x) V x € C° is positive semidefinite.

3. All sub-level sets of f, {x | f(x) < a} and {x | f(x) < a} V a € R, are convex sets. Whereas, the functions
whose sub-level set are convex, are called Quasi-convex functions.

4. If f’s are convex functions for i € [n], then max fi is also a convex function.
1<i<n

5. Point-wise maximum : If g(x,y) is a convex function of x Vy € Y, then f(x) = max g(x,y) is convex for
yeE

any arbitrary set).

https://en.wikipedia.org/wiki/Convex_hull
https://en.wikipedia.org/wiki/Convex_cone
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Quasiconvex_function

6. Non-negative weighted sum of convex functions is convex, i.e., if f;’s V ¢ € [n] are n convex functions, then
n

> o fi(x) is also a convex function for a; € Ry Vi € [n].
i=1

7. If f is a convex function, then so is f(Ax + b), where A € R?*¢ and b € R9.

1.2.2 Examples
1. Affine functions f(x) =a’x+b,ac R bR
2. Affine functions on matrices f(X) = tr(ATX) +b,A € R"*4 b c R
3. f(x) =(x,Ax), A cS}.

f(X) = —logdet(X), X €87,

All p-norms are convex.

Spectral norm : f(X) = [X|ly = Amax(XTX))2

NS o

Distance to a convex set X, dist(z, X) = ing(Ix =yl
yeE

8. Indicator function of a convex set X, 1x(x) is a convex function.

1 () 0, ifzeX
X) =
v 00, otherwise

1.3 Strongly Convex functions

If a function can be underestimated by some second order Taylor series expansion for all points in its domain, then
the function is a strongly convex function. Formally,

1]
f3) 2)+ (VfxLy —x) + 5 ly=xl; xyé€ dom f
1.3.1 Properties
1. f(x) is p-strongly convex iff g(x) = f(x) — § Hx||§ is convex.
2. If f is twice differentiable, then V2f(z) = ul.

3. If x* is the minimizer of the function, minimizing the right hand side of the definition with respect to y, we
get

F(y) > £60) + (VF),y =) + 5 lly = x5

> min { 7(x) + (V/(0).y = %)+ 5 lly = x[3}

— fx) - i Nk
— () > fx) - i IV ¥ x € R

4. If a function f is p-strongly convex and continuously differentiable, then V x,y € R¢ and « € [0, 1] using
strong convexity at both x and y with respect to ax + (1 — a)y, we have

f() > flax+ (1= a)y) + (Vf(ax+ (1 = a)y).x —ax = (1= a)y) + 5 [x —ax — (1 = @)yl

fy) = flax+ (1 - a)y) +(Vf(ax+ (1 —a)y),y —ax— (1 —a)y) + % ly — ax — (1 - a)yll5

Adding the above inequalities in the weights o and 1 — a we get

Flax+ (1= a)y) < af(x) + (1= a)f(y) - a(l =)5 |x — y3

Lemma 1.1. If a convez function f € CL, then
(V) = VI(y).x—y) > nlx -yl
Proof. From strong convexity we have
£ 2 F3) + (VI) x —y) + 5~y
F9) 2 F6) + (V) y =) + S x =y 3
Adding the above two inequalities we get the result. O

1.4 Smooth functions

If a function can be overestimated by some second order Taylor series expansion for all points in its domain, then
the function is a smooth function. Formally,

F(¥) S 60+ (VFGy =X+ o Iy —xl} xy € dom f

1.4.1 Properties
1. If f is twice differentiable, then V2 f(x) < LI.

2. Lipschitz gradient implies smoothness.

Now, [f(x) = f(y) = (Vf(y),x—y)| = /O (Viy +tx—y)),x—y)dt —(Vf(y),x—y)

1
s/o (V5 + t(x —), % — ¥) — (VF(y),x — y)| dt
1
< / IVF(y +t(x = y)) = VE@)la % — vl dt
1
< ||xfy|\2/0 Lt |x — |, dt
_ L
= 2 x -yl

Lemma 1.2. If a convez function f € CL, then

(VI() = Viy)x—¥) > 7 IVF0) - Vi)l

Proof. Using smoothness at both x and y,

(VI x —y) 2 1)~ 700+ 5 -yl
(I, y) > Fx) — () + 2 x -yl

— (VI V() x—y) > Llx—yl3 > 7 [VF(x) ~ Vi)l

1.5 Condition number

The ratio of smoothness and strong convexity is called the condition number (x) of the function.

If the function is twice differentiable, and if

pI < V2f(x) < LIV x € dom f
then k= L.
”w

Lemma 1.3. If f € Si,u’ then for any x,y € R? we have,

W 2 1 2
(Vf(x)=Vf(y)x-y)=> it L Ix —yllz + WL IVf(x) =Vl

Proof. Consider a convex function, ¢(x) = f(x) — & Hx||§ = Vo(x) = Vf(x) — pux.
If 4 = L, the statement is easily true using strong convexity and Lemma 1.2.
If w < L, then ¢ € 6%7“ and we can invoke Lemma 1.2 to get the result. O

1.6 Fenchel Conjugate

Fenchel transformation is used to transform an optimization problem into its corresponding dual problem, which
can often be simpler to solve. The Fenchel conjugate of f is

fr(z) = sup {(x,2) - f(x)}

xedom f

For intuition in 1-D, for a function f(z), given a slope y, we search for a point x that maximizes the separation
between g(z) := yx and f(z). Once we have found the optimal z*, we define a function with slope y, passing
through (z*, f(x*)). The intercept of the function with the y-axis is —f*(y).
1.6.1 Properties

1. f* is always convex.

2. Fenchel-Young inequality : f(x) + f*(y) > (x,¥).

3. In general, f**(x) < f(x).

4. f is convex and lower semi-continuous <= f**(x) = f(x).

5. f(x) is L-smooth <= f*(x) is f-strongly convex.

6. f(x) is p-strongly convex <= f*(x) is ;;-smooth.

1.6.2 Examples
L f(x) =z = f*(z) =1),.<1(z). Where ||z||, is the operator norm of z”.
watx < x| lz]),
2. f(x) = 1x(x) = f"(2) = supyex (x,2)
3. f(x) = 3xTQx = [*(y) =3y"Q 'y VQeS},

1.7 Sub-gradients
Sub-gradient is a generalization of gradients. g is a sub-gradient of f at y if
fx) =z fly) +(8x—y)

When a function is non-differentiable, we can have multiple such vector satisfying the above inequality, therefore
the set of all sub-gradients is called the sub-gradient or sub-differential set. That is,

of(y) ={g| f(x) > f(y) + (g,x —y) Vx € dom f}

1.7.1 Properties

1. 9f(x) is a closed convex set.

2. 9f(x) is non-empty when f is convex.

3. 9f(x) = {Vf(x)} if f is differentiable at x.
4. d(af)=adf ¥ a > 0.
5. I(f1+ f2) COf1 + 0f.

1.7.2 Examples
1. f(z) = |z|, then 9f(0) = [-1,1].
2. If f(x) = 121%);1]07()() = Jf = ConvU {9f; | fi(x) = f(x)}.

1.8 Projection operator

Projection of a point y on to a set X is the closest point on the set.
p . . o2
x(y) = arg min [[x —y|

— 3 _ 2
= arg min f[x —y|j; + Lx(x)

1.8.1 Properties
1. If X is closed and convex, projection is unique.
2. x*=Px)iff (x*—x,z—x*)>0VzelX
3. If X is closed and convex, projection is non-expansive, that is

|Px(x) — Px(y)lI° < Ix—y[I* ¥x,y €R"

1.9 Fermat’s rule, Normal Cone and first order condition

f:R™ = (—o0,00],
Then, argmin f = zer(9f) := {x € R" | 0 € 9f(x)}

c.min f(x) s.t. x € X becomes min f(x) + 1y (x) where 1y is the indicator function which is 1 if x € X, else 0.

.. from Fermat’s rule, 0 € 9(f + 1x)(x).

Or, 0 € 9f(x) + 01 x(x). From the definition of sub-gradients, if x € X,then g € 0l x(x) iff 1x(y) > 1x(y) +
(g,y —x) Vy e R".

That is, if x € X and 0 > (g,y — x), then g € 9Ly (x).
The normal cone of X at x is defined as

Nx(x):={geR"|0>(g,y—x) VyeX}

Hél% f(x) reduces to finding x* 3 0 € Vf(x*) + Nx(x*).
Or, -V f(x*) e Nx(x*) = (Vf(x*),y—x*)>0VyeX

1.10 Lagrangian Dual problem
Let convex functions f; : R" — R(0 < i < m)

min fo(x)
s.t. fi(x) <0 1<i<m

X € LmJ dom f;
i=0

For a primal problem, there is a Lagrangian associated with it where the constraints are brought up into the
objective function. The Lagrangian is defined as

L(x,A) = fo(x) + > Aifi(x)
i=1

where \;’s are non-negative are called Lagrange multipliers.
If x is feasible, then clearly fo(x) > L(x,A). ... L(x,A) is a trivial lower-bound to the objective function.
Lagrange dual g as a function of the Lagrange multipliers is the worst such lower bound for the objective function.

:= inf

9(A) := inf L(x, A)

Since the Lagrangian is a linear function in A, therefore the point-wise minimization over a family of such functions
is concave. Therefore g is concave in .

2 fo(x) > g(A) V x feasible and A € R,

Sop* r=min fo(x) > g(A) V X e R

Dual problem is therefore defined as

sup g(A)
AERT
Spt > df = sup g(A).
AeRT
1.11 KKT Conditions
min fo(x)

s.t. fi(x) <0 1<i<m

X € Odomfi

i=0
If strong duality is attained, 3 (x*, A*) 2
Vi L(%, A7) |x=x== Vfo(x*) + > A\ fi(x*) = 0.
i=1

SN fi(x*) =0 . AFfi(x*) = 0. If strong duality holds and (x*, A*) exists, then KKT conditions are necessary

i=1
for (x*,A*) to be optimal.
If the problem is convex, KKT conditions are sufficient.

1. fi(x*) <0 1<i<m

2.M>0 1<i<m

3. Affi(x*) =0 1<i<m (Complementary slackness)

4. Vi L(xX,A") |x=x+=0 (Lagrangian stationary)

https://en.wikipedia.org/wiki/Strong_duality

1.12 Stationary points

A stationary point is a point in the parameter space where the norm of the gradient vanishes. In optimization we
define an e-first order stationary point for which the norm of the gradient is at maximum e. That is, x is an e-first
order stationary point of the function f € C! if |V f(x)|, < € for € > 0.

2 Lower bounds on gradient based methods

Below are some famous lower bounds for optimization in the literature.

1. Lipschitz-continuous : If f is any L-Lipschitz continuous function, after ¢ iterations, the error of any
algorithm is Q(¢#~), where d is the dimension of the parameter space.

2. Non-smooth : Let A be a first order method starting from xg € R¢ that has the access to first order non-
stochastic oracle. Assume that the solution x* to the minimization problem min f(x) exists and ||xo — x*||, <

X
R and the function is L-Lipschitz on {x | ||xg — x*||, < R}. Then for any ¢,0 < ¢t < d—1, there exists function

f such that
LR

> 7
T 1+VE+1

Note that sequence {x;} satisfies x;11 = xo + span(g(xo),g(x1),.-.,8(x¢)).

fxi) = f(x)

3. Smooth : Similar setup. For 0 <t < (d—1)/2 and any xg, there exists a function f in the class of functions
which is infinitely differentiable with a L-Lipschitz gradient such that any first order method satisfies

3L |jxo — x*|3

floa) — Fo) = S

4. Strongly convex and Smooth : For any xo € R?, ;x> 0, and & > 1, there exists an infinitely differentiable
function f that is u-strongly convex and has L-Lipschitz gradient, for which for any first order method, we

have
_ 1 2t
) —,

N\ .
1 l[xo — x Hz

% — x|y >

o) = f(x7) =

=

S

3 Sub-gradient method

We can solve convex optimization problem in polynomial time by interior point methods. But these solvers require
@) (d2) or worse cost per iteration which is practically infeasible when d is large. A greedy, cheap and a locally
optimal way to decrease a convex function’s value is to iteratively move in a negative sub-gradient direction.
Algorithmically,

Xi4+1 = Xt — M8t

g: € 0f(x¢), and 1, > 0 is the step length. Here each per iteration cost is just O (d) which makes these methods
feasible in practice.
Assumptions : f is L-Lipschitz, therefore ||g:||, < G := L, and domain is bounded, i.e., [|[xo — z*|, < R.

3.1 General convex functions

In general, when a convex function is non-smooth and non-strongly convex, we can guarantee some convergence
rates associated with sub-gradient descent.

3.1.1 Convergence

We consider our Lyapunov function to be squared Euclidean distance from x* and not the difference in function
value to the optimal,

%112 * 112
||Xt+1 —X H2 = ||Xt — Mgt — X ||2
= |lx¢ — X*”; + 7 Hgtllg — 2 (g, X — X7)
< e = x5+ 07 llgells — 2m(foxe) — F(x7) (0 F(X7) > Flxe) + (8. X" — x4)) (3.1.1)

Telescoping (3.1.1) from ¢t = 1 to T, we get

T T

%12 * (12 2 *
ey = x5 < o = %715+ > 0 llgells =2 me(f(x0) = f(x7))

t=1 t=1

T T

2 2 2

— 2> mu(f(xe) = F(x) < = x5+ Y07 leells — llxrn — %713
t=1 t=1

T

2 2

< lxa =%l + > nf lleells
t=1

T
<SR+ G
t=1
T

T
5.2 min (f(xe) — f(x%)) Znt < QZnt(f(Xt) - f(x"))

1<t<T
- t=1

T

< R*+G? Z n?
t=1
T

R+ G* 3¢
t=1

— = min (f(x) = [(X') £ —————

Now we can choose different step-sizes to see how the convergence is affected
1. Constant : If n, = < BHGTE GO ag T
. onstant : m=n Et_w‘)?as — 0Q.

o0 o0
2. Square summable but not summable : Y 77 < oo and Y 7 = oo.
t=1 t=1
For fixed ¢, the best possible step-size is a constant 1, = Gi\/Z’ then after T steps, ¢ < 5—% Therefore for e

. . 2
accuracy in function value, we need at least (RTG) =0 (6%) steps.

3.2 Strongly convex functions

If a function is p-strongly convex, we can use this information to modify the convergence analysis to get a better
convergence rate.

3.2.1 Convergence
We consider our Lyapunov function to be squared Euclidean distance from x* and not the difference in function
value to the optimal,
(12 * (12
[xer1 = x5 = llxe — mege — 75
* (12 2 *
= llxe = x"[l5 + 0 llgells — 2 (mege, ¢ — x7)

< lxe = x*|5 + 02 llgells — 2n:(F(x0) — F(x*)) — 277% |x; — x*||3 (using strong convexity at x;)

10

= (1= mp) lIxe = x"[I5 + 07 lgell3 — 2me(f (%) — £(x7)) (3.2.1)

Setting 7, = 3, equation (3.2.1) becomes

. t—1 . G? 2 .
e =Mz € == llxe = x"llg + 55 = 5 (FGx) = (7))
.2 O G .
= tlxe =Xy < (= 1) [l = x7[I; + I ;(f(xt) - fx) (32.2)
Telescoping (3.2.2) from ¢t =1 to T, we get
T T
. 2 oA
Tlxri —x 3 < == (f(x) = fX)) + =5 D n
ri= -,
2 . e G2
= ;Z(f(xt)—f(x) < =T |xr41 —x \\24'72;
t=1 t=1
G2 -1
<TEY
/1,2 t=1 v
G2
= PO (logT)
T
2T . . 2 *
. 7 121%1T(f(xt) - f(x") < ; Z(f(xt) - f(x"))
t=1
G2
< FO(IOgT)
. N G? logT
= & = 121;1T(f(xt) — f(x") < EO (T)

3.3 Smooth functions

If a convex function has L-Lipschitz gradient, we can use this information to modify the convergence analysis to
get a better convergence rate than that for general convex functions.

3.3.1 Convergence

IVF(x) = VIl < Llx =yl
L
= f(x) <)+ (V) x =y + 5 [x -yl
Considering the squared Euclidean distance from the optimal,
* (12 * (|12
[xer1 = X[y = lIxe — mege — X7 I3
= It = x* |5+ 777 llgells — 2 (e, %0 — x7)
= llxe = x"[I3 + 7 llgell; — 2 (& — 8", % —x*) (where g* € 9f(x"))

w12 2 2n w2 .

< lxe = x5 + 77 llgell; — ~ llge —g’ll; (Using Lemma 1.2)
) 2 2m 2

< e =" el — 2 g
12 2 2

=l =13 = (5 =) Dl

Therefore for n; < %, the distance from the optimal decreases monotonically.
Using smoothness for two consecutive iterates,

Feen) < FOxa) + (Y Ge) s —xa) + 5 I =il

11

= f(xi) - m||Vf<Xt>||2+ L v el
= 1) = (1=) 19 03

Therefore again, for n; < % we have descent but we will choose 1, = % as it is the minimizer.

We define A, := f(x;) — f(x*)

Fx) — Flxinn) > iL IV <o)
= A1 <Ay - ﬁ IV (<)l

From convexity,

A = f(xe) = f(x7) S (VF(xe), %0 = x7) <[V ()l Ixe — x|,
AQ
—IVf (x5 < ”72

[

Plugging in equation (3.3.3) in equation (3.3.2), we get

A A
A <A 1- —=—) <A [1- ——
2L [x; — x| 2L |xi — x*|3

Since <1,

Ay
2L[[x1 —x* |,

1 S 1 1 S 1 14 Ay
Arpr — Ay (1 _ #) AV 2L ||x4 —x*Hg

2L |x1—x*[|3

Telescoping equation (3.3.5) from ¢t = 1 to T', we get
1 1 T

> +
Ar = A1 2L |x; — x*|
Re-arranging (3.3.6), we get

2L ||x; — x*||3
T TA +2L % —x*||3

Using smoothness at x* we have
L %112 %112
Al < 5 ||X1 — X ||2 - 4A1 < 2L ||X1 — X ||2

Plugging equation (3.3.8) in equation (3.3.7) we get

Ar < - z

201 L [xa = x5 _ 2Llxa =[5 _ (1
= (T+4)A T+4

3.4 Smooth and Strongly convex functions

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

If a convex function is p-strongly convex as well as if its gradient is L-Lipschitz, we have geometric rates of

convergence.

12

3.4.1 Convergence
Considering the squared Euclidean distance from the optimal,
* (12 * (|2
[xer1 = x5 = lIxe — mege — X7 I3
* (12 2 *
= [Ixe — "5+ llgellz — 2770 (&1, %0 — x)
2 2 *
= llxe — x*[l5 + 7 llgell> — 20 (e — 8" % — x7)

1
I =+ - IV Gx) = VA G)3)

w2, 2 2 [
<lxe = x5 +n7 llgells — 277t(lH_L

(Using Lemma 1.3)

2nepL)2 2 2
= 1 — — e —
(1= 222) b =1 e (= 2) el
Therefore when n; < HJQF 7, we have a decrease. Therefore for 0 <7, < HJ%L, we get
2n L
*(2 U7 2
s = x5 < (1= 225 i =)

; 2
To get the maximum decrease, we set 7, = I Therefore,

L— 2 K—1)\2
2 1Y 2 2 2
Ixet1 —x*[|5 < (w> Ix: —x*||5 = [|xe41 — x5 < (H T 1) Ix: — x*|5

Recursing (3.4.1) we get a geometric convergence rate in parameter space.

* (12 k—1 T * (12
[xr41 — x| < %1 = x*l5

k+1

Using smoothness at x*, i.e., f(xr11) — f(x*) < & [|xp41 — x*|,, we get

L(r—1*"
foxr) - 16) < 5 (57) =l

4 Projected Sub-gradient method

When the feasible set of parameters is constrained, we need to project the iterate to the feasible set.
Zi41 = Xt — 8t
X1 = Px(211)
As we have seen in section 1.8, projection on to closed and convex set is non-expansive. That is
2 2
[1Px(x) = Px(y)ll; < lx =yl Vxy € R"
where X is a closed and convex set. Therefore to analyze its convergence, we just need to modify (3.1.1) as
2 2
[xe41 —x"[ly = [|Px(xe — mege) — X"
< %t — mge — x5
*((2 2 *
= [lx¢ — x5 + i lgelly — 2 (mege, x¢ — x*)

And the analysis proceeds in a similar way with similar convergence rates.
Some commonly used projection operations and their closed form solution are listed below

1. Non-negativity: X ={x|z; >0V i € [d]} = Px(z) = [z]|+

(3.4.1)

(3.4.2)

(3.4.3)

2. U ball: X = {x| x| <1}, Px(z) = arg mi)r{l lIx — zHg, this minimization is coordinate separable and
x€

Py(z) =y where y; = sign(z;) min{|z|, 1}.

13

3. Linear Equality constraint: X = {x| Ax = b}, A € R"*? has rank n.
— Px(z) =z AT(AAT)"!(Az —Db)
=I-AT(AAT)'A)z+ AT(AAT)" b
For the update step, using Ax; = b,

Xer1 = Py (x¢ — 7i8t)
=x; — (I - AT(AAT) T A)g,

5 Proximal Gradient Descent

Suppose we have a composite objective function of the form

Consider examples like {(x) = 1 |[Ax — b||§ and r(x) = A||x||;. r(x) in this problem is non-smooth which makes

f(x) also a non-smooth objective. Therefore according to the lower bounds we saw in Section 2, we cannot achieve
a better rate than O(%) Therefore any algorithm which takes just the sub-gradient information cannot lead to
anything better. What we know about such objective is that it is a sum of a smooth and a non-smooth function.
This fact can be exploited by the Proximal Gradient method.

For projected gradient descent we have
min f(x)
X1 = Py (x¢ — m:8t)

For proximal gradient descent we have

min f(x) + h(x)
Xp1 = Prox,, (x; —nVf(x))

Here prox,, (.) denotes the Euclidean proximity operator for h.
5.1 Proximity operator
The projection operator as we had defined in Section 1.8 is
. 2
Py (y) = arg min ||x —y||5 + Lx(x)
x€ER4
For defining the proximal gradient we just replace the indicator function with the non-smooth component of the

objective, i.e.,
. 2
prox; (y) = arg min Ix — y|2 + h(x)
x€ER?

5.1.1 Examples :

For Lasso linear regression,
min < x = [} + Al
We can split the problem into each coordinate and have d sub-problems of the form
.1 2
min i(x —y)° + Az
The operator that maps = to the minimizer is called the soft-thresholding operator which is

soft(z, A) :=sign(z)(|z| — A)+

14

5.1.2 Understanding the operator
From Fermat’s rule in Section 1.9, we have
0 € Vf(x") + Oh(x*)
0 € nVf(x*) + noh(x")
x* e nVf(x") + (I+noh)(x")
x* =V f(x") € (I+noh)(x")
x" = I+ n0h) 7 (x* = nVf(x"))

Defining the operator (I 4 ndh)~" as prox,, (.) we obtain the fixed point iteration as

Xp41 = Prox,, p, (x¢ — eV f(xt))

Therefore if Gy (x) := L+ (x — prox,;, (x —nVf(x))), we get an equality similar to the gradient descent step,

X1 = %Xt — Gy, (%)

This gradient descent like mapping is called gradient mapping.

5.2 Convergence
For f € C}, let y = x — nG,x, then V z we have
Fy) < FG) +{VFGy %)+ 5 lly
’L

= () = (VI (), Gy (x)) + 5= |Gy ()

< 160~ 1 (V0. Gy + 21GuE (0=)
From convexity of f, we have

f) < f@)— (Vi(x)z—%) VzeR
Adding Equation (5.2.1) and (5.2.2) we get
f(y) < f(z) = (Vf(x),2 —x) = (Vf(x),nGy(x)) + g I1G, (x)115

From convexity of h, we have
hy) < h(z) = (Gy(x) = V[f(x),z2—y)
Adding equation (5.2.3), (5.2.4) and using the fact that y = x — nG,(x), we get
F(¥) 4 h(y) < F(2) + h(z) + (Cy(x).y — 2 — (VF(x), 2~ x +1Gal3) ~ 2+ y) + 1[Gyl
= () + h(z) + (Cyx), %~ 2) + (Galo0),y —) + | Gylo0)
= (2) + h(2) + (Gy(x),x = 2) = 1 |Gy
The above inequality with ¢ = f + h, y = x¢+1 and x = x; shows that it is a descent method.

O(x1+1) < B(xe) = 4 Gox0)]I3

(5.2.1)

(5.2.2)

(5.2.3)

(5.2.4)

(5.2.5)

With z = x* in Equation (5.2.5) we can start analyzing the convergence of Proximal Gradient method for smooth

functions.

O(x141) = 0(x7) < (Gy(x0), %0 = x7) = 2 |Gy ()5

15

= = [0y (%0 x0 — x) — [0Gy (x)|2]

2n
1)2)2
= o= [lI®e =X |l5 = ||Xe1 — XT3 2.
o [—x"|[5 =[x x| (5.2.6)
Summing Equation (5.2.6) from ¢t = 1 to T', and setting n = % we get
T . T
* * * (12 * 12
T(o(xr) = ¢(x7)) =) _(d(xe) = ¢(x7)) = 5 D xe = x5 = lIxern —x*|3)
t=1 t=1
L |2 |2
= 5 [t = %7115 = Iz — 7113
L w2
< BY 1 —x" I3
= 6xr) — O(x) < g et — [
XT o(x™) < o7 X1 — x5

Therefore when ¢ is not a completely smooth function, but a sum of smooth and non-smooth function, we can still
achieve the known O(7) sub-optimality rate.

6 Conditional Gradient method (Frank Wolfe algorithm)

If we want to perform constrained minimization over a convex set X of diameter R := sup |x—y|,, and the
x,yeX
projection operator is expensive, we might always want to stay inside the set X. Here comes the importance of the

classically well known algorithm called Conditional gradient method or the Frank-Wolfe algorithm.
Algorithm 1: Frank Wolfe algorithm

Initialize : xg € X, {n,, V¢ € N}
fort=1,2,...do
vy = argmin (x, V£(x¢))

Xep1 = X + (Ve — X¢)
end

As we could see, the iterates v, and x; always stay inside the set X for all ¢ as x;11 is a convex combination of x;
and v;. It is to note that the direction v; — x; may not be the direction of the negative gradient at x;.
6.1 Convergence

We will analyze the algorithm for the function class of L-smooth and convex functions. Therefore if f(x) is an
L-smooth convex function we have

F(xeq1) = (X)) = f(xe +me(ve — x¢)) — f(XF)

<) —) e (9 oe)ve)+ T2 v 1
< flx) = FG) +m (T Fe)x =)+ v~} (Optimality of v,
< 1) = £+ () = £ k) + 1L v = (Convexity of /)
< (1= m)(fx0) —)+ PEE (6.1.1)
Setting 7, = 2 max {1, f(z1) — f(x*)}, we induct on the hypothesis that
Flox) — Fx) < 2 e (1, £(en) — £x)) (6.1.2)

Assuming (6.1.2) we have

LI s {1, f(mn) — 7))} + Tg oy max {1, fmn) — Fx))

Foxeen) = 1) < (1= S max (1,7 Gon) = 1))

16

< 2LR?max {1, f(z1) — f(x")} (1 _ max{l, f(z1) — f(X*)})
- t t

_ 2R max {1, f(e1) = SO} (|1
- t t
2LR? t—1 t
< 22 s {1, () — 1) (=) (613)
Therefore, if the algorithm is run for T iterations, we get the upper bound on the sub-optimality gap as
. _ 2LR? .
fxr) = f(x7) < max {1, f(z1) — f(x%)} (6.1.4)

6.2 Examples

We will now discuss the commonly used constraints and their closed form minimizers of the inner product with the
gradients. Norm constrained minimizations over the set ||x|| < r, are very common, therefore for any general norm,
the arg min step of the algorithm reduces to
arg min (x,Vf(xy)) = —r-arg max (x, Vf(x:))
=l <r <1

lII]

— V). (6.2.1)
where ||-]|, corresponds to the dual norm of ||-||. Below are some commonly used norms and their dual norms.
1. For ¢; norm, the corresponding dual norm is the o, norm. Therefore we have v; = —r - sign(V;, f(x:)) - €,

where i, € argmax |V;f(x¢)|. Note that this simpler compare to projection on to ¢; norm ball though both
1
require O(d) operations.
2. For /4, norms, the corresponding dual norm is the ¢, norms such that % + % = 1 is satisfied, for p € [1, c0].

Then we have (v¢), = —a-sign (V; f(x¢)) - \Vif(xt)\% where « is such that [|v¢[|, = 7. Note that this is easier
than projection on to the £, norm ball for a general p € [1, c0].

3. For trace norm |||y, the corresponding dual norm is the operator norm ||-||,. Therefore we will have V, =
—r -uv? where u and v are the leading left and right singular vectors of Vf(X;). Here V; and X; are
matrices corresponding to v; and x; in the algorithm. Note that for the projection operator would need to
compute the full SVD of V f(X;) whereas here we just need the leading left and right singular vectors which

is relatively cheaper to compute.

7 Stochastic Gradient Descent

When our data is large scale, computing the exact gradient turns out to be very expensive. Stochastic optimization
methods make it possible to reduce the computational complexity of each iterative step and still provide good
optimization and generalization rates. Instead of computing the exact gradient, these methods have access to the
noisy stochastic first order oracle.

If the function f can be decomposed into an empirical mean of n functions {f;,i =1,2,...,n}, i.e.,

== filx)
=1

Therefore we have a trivial unbiased estimator for sub-gradients, i.e., df;(x) for ¢ sampled from U([n])
Therefore,

gx) —EDfX)] st g(x) € Of(x)
Considering the objective function as

min f(x)

xeX
We get an iterative update rule as
Xt+1 = P (X — migt)
where g; := 0f;(x;¢) is a random variable for i ~ U([n]).
To note, x; depends on random variables, i1,14a,...,4;—1 all sampled independently from U([n]).

17

7.1 General convex functions

f is a general convex function with bounded stochastic gradient, i.e., ||g¢||, < G and with finite domain, i.e.,

[x —x*[[, SRVxeX.

7.1.1 Convergence

Define Ry := ||x¢ — x*||§ and 1, :=E[R] =E [||xt - x*||§}

Rigy = [Ixe41 — %73
= || Px(x¢ — met) — PX(X*)HE
< xe —x" —mgill
=Ry +77t2 ||gtH§ — 2 (g, Xt — X7)

Taking expectations and using the bound on || gt||§, we get
rey1 < e+ 0GP — 20 [(g, xi — x7)]
Using the fact that x; is dependent only on 1,42, ...,%;—1

E(x; —x*, g)] = E[E[{(x¢ — x*, @) | 11,92, .-, 4-1]]
=E[(x; —x"E[g; | i1,2,...,1t-1])]

(
=E[(x =x"g(x))] g(xt) € 0f(xt)
Plugging Equation (7.1.2) in Equation (7.1.1), we get
repr <+ GP = 20 (% — X7, g(x4))]

Because f is convex, we have
fx7) =
(9(xt),x —x") >
= 2B [(x; —x", g(x¢))] <

fee) 4+ (g(x4), X" = x1)
fxt) = f(x7)
=2n:(f(x¢) = f(x7))

Plugging Equation (7.1.3) in Equation (7.1.1), we get

rep1 < e+ G = 2n(f (x0) — f(x7))
= 2 (f(xe) = (X)) <1 —rer + 07 G°

Telescoping Equation (7.1.4) from ¢ = 1 to T we obtain

T T
D om(fxe) — f(xT) < —rr + G2
t=1

t=1

T
§T1+G2277t2

t=1

Defining v; = -1 and Z " =1,
SPTNS

i

T
E (> o) — fx) | € —— =

18

(7.1.1)

(7.1.2)

(7.1.3)

(7.1.4)

(7.1.5)

T

T
Now we define X7 := > vy, therefore from the convexity of f, f(Xr) < 3 e f(xt).
t=1 t=1
Therefor Equation (7.1.5) can now be written as
T
1+ G? Z 77,52
E[f(%) - f(x")] € ——F——
2. m
i=1
T
R+ G* >0}
< t=1
= T
23 m
i=1
If for T fixed and n; = n for 1 <t < T, we have
R? + G?Tn? G?*n
E[f(x:) — M < T
[0 = £ < T T 5 El s T o 0
. . . . o R
Equation (7.1.6) minimizes for n = G
RG

Elf(x) — f(x7)] < T

(m= O(%)) to get a convergence rate of O(ﬁ)

|

Therefore when T is not fixed, we choose n; = e

y

t

7.2 Strongly convex functions

If f is p-strongly convex, we can use this additional information to show a better convergence rate.

7.2.1 Convergence with uniform averaging

Considering the squared FEuclidean distance from the optimal,
*1(12 *\ (12
[xe41 = x5 = | Pa(x¢ — mee) — Pa(x")][3

< e =% — megell3

2 2
= |lx¢ —x*[|5 + 77 llgells — 2 (g, x¢ — x¥)

Taking expectation with respect to i1,149,...,4;—1, and using the fact that x; is dependent only on 41,75, ..

E[lxir1 = x*[13] < B[lx = x" 3] +n2G* - 2m (Elgi] ,x — x*)
= Elx = x" 3] + 172G — 200 (V£ (3x0), %0 = x)
From the strong convexity of f, we have
FOE) = Fe) + (VF(oxe) x" =) + 5 e = x5
— —2 (V)30 = %) < ~2me(Fxe) = FO) + 5 e = x[3)
Plugging Equation (7.2.2) in Equation (7.2.1), we get
E [lhcess = %3] < E [l —x73] + 262 = 2m(F () =) + 5 e =)

— 2 [f(x) = S(x")] 022 + (1= un)E [l = x"[3] = E [lxesr = x7 3]

19

(7.1.6)

< -1,

(7.2.1)

(7.2.2)

oy o MG 1 — 2 1 2
— - < 2 — - - 2.
Ef(e) = f(x)) < =+ o E [HXt x ||2} 2mE [||Xt+1 X ||2} (7.2.3)

Therefore if we set 7, = ﬁ, we get

2 _
B[7c) -)] < g+ P [l = 2] - 218 [l 1) (724)

Telescoping Equation (7.2.4) from t = 1 to T, we obtain

T
> E[f(xi) — Z% “— [me - x*||§} (7.2.5)

Dividing by T and from the convexity of f, we further get

1 & S
E f(T;Xt> _f(X*)] < T;E[f(xt)_f(x*)]
PG
— 2uT —t
< i (14 1log(T))

2uT
And from Equation (7.2.5) we also get

GQ

")

E [||XT+1 = x5 < ﬁ(l +log(T))

This rate of the convergence of the last iterate, can be tightened as we will show in Section 7.2.3.

7.2.2 Convergence with weighted averaging

Instead of uniform averaging, we can have a weighted averaging scheme to get a better convergence rate [5].

Following the previous analysis, if we put n; = ﬁ in Equation (7.2.3), we get
* G? /u’(t _ 1) *((2 /j’(t + 1) * (|2
BIf(a) = F) S oy v E (Il = x*13] = = [JIxer —x"I1] (7.2.6)

Multiplying Equation (7.2.6) by ¢

(B (o)~ F0)) < % 2 [t — DB [= x[8] = e+ DE [=1
< B [t — 08 [l — 1] — 16+ VE [l —x° 1] (727)

Telescoping Equation (7.2.7) from ¢t = 1 to T we get

T

oo TG?)
D ELS) = SO € == o [=TT+ DB e =[] (7.2.8)
t=1
T
Dividing Equation (7.2.8) by @, using the convexity of f, and defining X7 = T(T2+1) > x¢, we obtain
i=1
2G?
E[f(xr)— N < —~
4G?
A, E||xr —x*|}| € 5—
e “'XT x ”2] = 2T+ 1)

Therefore by a better averaging method, the convergence of SGD for p-strongly convex functions can be improved

to O (%) from O (IOgT>

20

7.2.3 Convergence of last iterate

Considering the squared Euclidean distance from the optimum, we can again show a convergence rate of O (%)
after T iterations. The analysis follows via induction. From strong convexity at x;, we have

Ll = X713 < FO) = Fxa) + (VFGxa)x = x7) < (T x1) %1 = x7) < [956x)ll 1 = %,
2
— IVFG)ll3 > Bl — x5
Now,
E[llgil3] =B [IV/6a) + (&1 = V)] =E[IVS(x)I3] +E [ller = VI Gx)l3] + 2B [V f(x1), 1 = V£ (x1)
—E[IV/ex)l3] +E [llen - v/ Gxa)l3]
> E [|IV£ (eIl
Therefore we have
. 4 4 4G?
E [l 3] < ZE[IVFGa)l] < E [leal3] <

Therefore for t =1, E [||xt —x* Hg} < ‘fg: holds. For a general ¢,

E |1 — x| = E [Pl — mge) — Pl

<E|[x; —x* — mgt\li}

= B[l = x| + 7B [lgel3] — 20 (g, — x7)]

= E [l —x"[13] + nZE [Jlgell3] — 2mE (V5 (x0), x¢ = x7)]

Using strong convexity of f at x* using Lemma 1.1, we have
(V)% = x7) > [l — x73
Therefore
E[lxi1 = x*I3] < E [Ixe = x*13] + n7E [lleel3] - 2mmE [Ix - x* 3]
< (1= 20)E |fx; = x"[3] + nfG?

Plugging in n, = i, we get

* (12 2 *1(12 G2
E |l = xla) < (1= 5) B [= x7IE] +

Therefore for t =2, E [th —x* Hg} < 4%;: holds again. Assuming the hypothesis to be true for t — 1, we have

o
. 4G2
B[l —x13] < =1
nuet
And checking for t,
.2 2\ 4G? G?
E [thﬂ -x ||2] < (1 - t) e + 22
G
< 20 (4t =17)
< 4G?
T pA(t+ 1)

Therefore we have E [HXT - X*||§} <41 _ 0o (%)

21

7.2.4 Convergence using Tail Averaging

Instead of using a weighted average as what analyzed in Section 7.2.2, we can also show similarly good con-
vergence bounds for uniform averaging on the tail of the iterations called a-suffix averaging, as shown in [10].
We define the last a fraction of the iterates as the a-suffix, therefore the result talks about the convergence of

Xy = ZZ:(I—a)T-{-l x;. Upper bounding E [||xt+1 - x*Hg},
E[lxie1 = x"[13] =B [IPx(xi — men) — Prl(x) 3]
<E [Ix —x" —mgil3]
< E [l = x"13] +n?G2 — 20 (VS (x0), %0 — %)

® 12 %112
m@ﬁ;,ﬁmm—qu E {lpeess — %71}

= E[(V/f(x¢),x¢ —x")] <

2 2 T]t T]t
By convexity,
T T
> EUVix)xe—xN)] = Y E[f(x) - f(x")] > oTE[f(x]) — f(x")]
t=(1—a)T+1 t=(1—a)T+1
Therefore
[z T [E|lx—x 3| E |l - x|
S * 1 t 2 t+ 2
E[£(%5) — f(x")] < > mG+ Y | 2l |
2aT i B Ug Mt
[t=(1—a)T+1 t=(1—a)T+1
[T T
1 1 5 /1 1)
< E |:HX(1_O‘)T+1 - X*H2:| + Z E |:||Xt - X*||2:| < -) + G Z ui
20T | na—ayr t=(1—a)T+1 o e t=(1-a)T+1
Using the result from section 7.2.3, we have E [HXT - X*||§:| < fﬁ; Using this we get
1 1 4G? d 11\ 4@ | @ &
E (%) — f(x")] < " (G-2) 5|+ az m
20T | na—ayr (1 —a)T+1) t—(1za:):r+1 N Mi—1) pPt 2aT t—(lztx:)T+l
Plugging in n; = ;%t’ we now have
262 | G2 |
]E T\ * < - 1 -
RS ey IR DI R DI
t=(1—a)T+1 t=(1—a)T+1

Using the fact that ZtT:(l_a)TH % <log ﬁ7 we simplify and get

E[f(x7) — f(x")] < 4 T

5
_ 243l ils @2 o(%)

The constant as a function of alpha is minimum at a ~ 0.7675.

7.3 Smooth functions

If each of the f;’s are L-smooth, we can guarantee good convergence rates.

22

7.3.1 Convergence

Let e, := V f(x;) — gt, therefore E [e;] = 0 and assume E [||et||§} < o?. Then for n, = ﬁat where ay = O (%» it

can be shown that
Elstxn) - 1) <0 (45) + 0 (2F)

T
Where %, = % 3 xy.
=1

7.4 Smooth and Strongly convex functions

If f is L-smooth and p-strongly convex, we can use the result in Section 7.2.2 to obtain the convergence rate for
this class of functions.

7.4.1 Convergence

T
From Section 7.2.2, with X7 = T(Yg+1) > x and g = ﬁ, we have
t=1
4G?
B [xr — I3
”XT X ”2 = MQ(T+1)
L 9 2G2L
— E[f(Xr) — *<—E[—*}
[f(XT) f(X)] =7 HXT X ||2 = /LQ(T+1)

7.4.2 Convergence of Bias and Variance

One can break the error into Bias and Variance terms and see that the rate at which the bias error decays is
linear [6]. Let ¢ € U ([n]), then

(o)l

=[x = X" = 2m (x¢ — x*, Vfi(x2)) + 07 |V filxe) = VFi(x) + V(x5

< [l — x*|f3 = 2 (%1 — X", Vfi(x0)) + 207 |V fi(x1) = V(x5 + 207 IV (x5

< lxe = %75 = 20 (x¢ — X", Vfi(x0)) + 207 [V £3(x7) I3

+ 2021 (x; — x*, Vfi(x:) — Vfi(x*)) (Using Lemma 1.2) (7.4.1)

[xe41 — x*|5 = |Jxe —x* =V fi

Taking expectations on both sides of equation (7.4.1), and using the fact that
B[=%, Vi(x) = VA)] = B[= x5, VF(x1))]
we get
E[lxi1 = x" 3] <E [Ixe = x"13] = 201 = e L)E [— %, V£ (x0))] + 207E [V £i(x")]3] (7.4.2)
From Lemma 1.1, we have

(f(xe) = F(X7), %0 — x*) > |l — x|

= ~E[(/(x), %~ x")] < i [[— x| (7.4.3)
Using (7.4.3) in (7.4.2), we get

E Ixes = x"I3] < E [llxe = x*13] = 2um (1 = mDE [IIx = x*[13] + 207E [V fi(x")113]

= (1= 2pue(1 = L)) E [, — 73] + 207E [|9 1)1 (7.4.4)

23

Assuming 7; to be a decreasing sequence with 7; < ﬁ, and unrolling (7.4.4) till ¢ = 0, we have

t—1

Elxe = x*[13] < [1 = 2me(1 = D) llxo = %113 + 202 [V £ix)13]) D11 = 2um (1 = meD)]
=0
t %112 Mt %3112
< [0 2pm (=) oo = X[+ R 1V 5613 (7.4.5)

Let us define ¢y = ||xg — x*Hg, o?:=E [||Vfl(x*)||§], and setting 7, = Mﬁ, we get

uzet " eo?
2= (L=
el + 02 [0 202 + 2Lpe

< et n €
<exp{ — € —
enJrZ—z 079

E [l - x13] < e { -

(7.4.6)
To have the final error bounded by €, we need to have
t
Zexp{— ¢ z}eoge
ek + %5
n
2
- = >1 =0
K+ ﬁ €
2
2
— t> </<c + J2> log =2 (7.4.7)
u2e €
Therefore for T' > (m + :—i) log 2% iterations, we will have
E [IIXT - X*Hi} <e (7.4.8)

It is to note than if o = 0, of when V f;(x*) = 0 for all i € [n], we have a linear convergence rate for SGD, that is,
if ¢ = 0, then after T > klog 2 iterations, we will have

€

E [||xT - X*Hg} <e (7.4.9)

8 Some faster stochastic algorithms

SGD is popular for large scale optimization but it has slow convergence asymptotically due to the inherent variance.
In order to ensure convergence, the learning rate 7; has to decay to zero which leads to slow convergence. The need
of small learning rate is due to the variance of SGD.

A popular way that does explicit variance reduction is SVRG [1] and its variants [2] as we discuss below.

8.1 Stochastic Variance Reduced Gradient (SVRG)

We have the same setting where
1 n
f(x) = n Zfi(x)
i=1

We assume f to be p-strongly convex and each f; to be L-smooth. The algorithm keeps a snapshot x after every
m iterations. Moreover, the average gradient is maintained, i.e.,

g:=Vf(x) = %ZV}%(&)

24

Note that E [V f;(x) — g] = 0. Therefore we can have the stochastic update defined as
xe+1 = X¢ — Ne(Vfi(xe) = Vfi(X) + &)

where i ~ U([n]). }
The above update is the normal SGD update of the auxiliary function with f;(x) := fi(x) — (Vfi(X) — g,x). And

since 231(sz<§() —-g) =0,

=23 fil == > i)
i=1 i=1

For every stage of m such updates, we have m + n gradient computations. Therefore it is natural to choose m to
be of order n or slightly higher (for example m = 2n for convex problems and m = 5n for non-convex problems).
The algorithm therefore is described as

Algorithm 2: SVRG
Initialize : X
for s=1,2,... do

X =Xs5-1

g=15 2L VSi(®)
i=1

X1 = X

fort=1,2,...,m do
Sample i ~ U([n])
Xep1 = X — Ne(V fi(xe) = Vfi(X) + &)
end
option I : set X, = x,,
option II : set X; = x; for randomly chosen ¢ € [m)]
end

8.1.1 Convergence

For all 4, define
g9i(x) = fi(x) = fi(x") = (Vfi(x"),x — x7) (8.1.1)
Therefore we have g;(x*) = ming;(x) (.- Vg;(x*) = 0), therefore
0 = gi(x") < min[g; (x — nVg;(x))]
. L .
< ming;(x) =1 IVg: ()15 + 3 IVgi(x)ll5] (g s also L —smooth)
— (%) — = Ve ()12
=009 — 5 Va2
Plugging in g(x) and Vg(x) from the definition of g in Equation (8.1.1), we get
IV fi(x) = V fi(x*) I3 < 2L[fi(x) = fi(x") = (Vfo(x"), x — x")] (8.1.2)

Summing Equation (8.1.2) over ¢ = 1,...,n, and using the fact that V f(x*) = 0, we get
1< . "
~ Y IV = VS < 2L (x) - f(x7)]
i=1

Now let v := V f;(x:) — Vfi(X) + g. Taking the conditional expectation of ||vt||§ given x;, we have

E[Ivill3] < 2E [I9/:6x) = ViG] + 2B [I[V (%) = V()] - VIR
= 2B [IVfi(x) = Vhi(x")3] + 2B [[[Vi(%) = VAi(x)] ~ E [V (%) = Vi3

25

< 2 [IVfi(x1) = V(x5 + 2B [I9£i(%e) = Vi (x) 3]
< AL[f(x) = (x) + (%) = F(x")

Considering the squared Euclidean distance from the optimum, and taking its conditional expectation given x; we
get

E[lxi1 —x*13] = E [l = x"13] = 20 (x0 = %", Ewi]) + 17 [Ivell3]
<E [l — %3] = 2m e = x7, V f(ox0)) + AL0FS (x0) = () + F(R) = f(x)]
<E [Ix = x| = 2mlf(x0) = FO)] + AL (x) = F(x7) + (%) = Fx°)

= E [lxe = x"[13] = 2m(1 = 2Ln)[f (x0) — F(x")] + ALRF[f (%) = (")

Therefore
E [lces = x72] + 201~ 2Ln)[fGx) — F)) < B[l —x 12 + 4L [F(R) — f)] (8.13)
Telescoping Equation (8.1.3) from ¢t = 1 to m — 1, setting n; = 7, and taking expectation with the history, we get
Elxm — x"[3] + 20(1 = 2L)mE [f(%,) — f(x)] < B [lx1 = x* 3] + 4LmifE [f(&e-1) = f(x")]
= E[l%s-1 = x"|I3] + 4Lmn®E £ (%s-1) = f(x")]

2R [f(Rae) — FOC))] + ALmPE [f(Raon) — F(x7)]

IA

= 2(% + 2Lmn*)E [f(%s-1) — f(x*))]

Therefore rearranging the terms we get

1 2Ly
|
un(l —=2Ly)m 1 —2Ln

Elf(xs) = f(x)] < Ef(Xs-1) = f(x7))]

1
pun(1=2Ln)m

: _ 2Ln
Defining o = + 155150 e have

E[f(xs) = f(x7)] < ”E[f(%0) = f(x7))]

Usually, m is chosen to be O (k) and = O (1) to give a convergence rate of O ((n + x)log 1).

8.2 SVRGH+

The original SVRG method as described in [4] was for strongly convex objectives, whereas objectives like that of
Lasso or Logistic regression etc., are non-strongly convex. A variant of SVRG known as SVRG++ algorithm [2]
which gives faster convergence by modifying it in a novel manner.

Consider the composite convex minimization problem

min {F(x) = f(x) + U(x) := % Zfi(x) + \I/(x)}

x€ER?

Here f;’s are L-smooth functions and ¥ is a relatively simple (possibly non-differentiable) function. Example - For
lasso, fi(x) := 1({a;,x) — y;)? and ¥ := o ||x||; where o is a hyper-parameter.

In the presence of the the proximal function ¥, the SVRG update becomes

: 1 2
i =g ain {5 Iy = xil3 + (€0y) + 90

26

where &, = V fi(x;) for SGD and &, = V f;(x;) — V fi(X) + f(X) for the snapshots x after every m stochastic updates
in SVRG. Each of such definitions of &, satisfy E[£,] = V f(x).

For SVRG++, the s-th epoch consists of mg stochastic updates and m, doubles after epoch, i.e., ms = 2°mg. Also,
unlike SVRG where X* is the average point of the previous epoch, for SVRG++ we have x§ = xs 1

Algorithm 3: SVRG++(x?,mo, S, 1)
Initialize : %o = x?, x} = x?

for s=1,2,...,5 do
Vf()

|'M:

gs 1= %
mg = 25m0
fort=0,1,...,mg—1do
Sample i ~ U([n])
& = Vfi(x}) = Vfi(x*™") + 851
S 3 S 2 S
Xt = arg min {35 [x] — I3+ ¥0y) + (&)

end
1 mg
< — S
Xs = m., E Xt
t=1
s+1 S
Xo Xm,
end
return x°

8.2.1 Convergence

Let i ~ U([n]) be the random index for the s-th epoch and ¢-th inner iteration, and similarly & = Vf;(x5) —
Vfi(x*71) + g,_1 be the stochastic gradient.

For all u € R?,

B [F(xiyy) — Fw)] =B [f(xf41) — f(w) + T(xi1,) — ¥(u)]

L
<Eis [f(x5) = fu) + (Vf(x]), %], — %)+ b) HX;&; - Xf+1“§ + W(xiiq) — q’(“)}

(Using smoothness of f)

L
< By [(VA00),xE =)+ (TF D)y = x0) + 5 1t =i+ W) — 9(u)

(Using convexity of f)

L
= Eif (i, x; —u) + <Vf(Xf),Xf+1 - Xf> + b} ||Xf - X§+1HZ + ‘I’(Xfﬂ) - \Il(u)] (8.2.1)

' (Since E;; €] = V(x}))

Analyzing the first and the last two terms in Equation (8.2.1),
(65,55 —) + U(xia,) — W) = (6,55 — xEer) + (6, %0 —w) + U(xiny) — U(u) (3:22)

. . 2
Since xiy = arg min {3 i~y + U(y) + (€.y)} = T& € 0W0xi1) 2 flxiy —x]) + & +& = 0. From

the convexity of ¥, we have

V(u) — Xt+1 <g,u - Xt+1>
S 1 S S S 1 S
= \I/(u)_\ll(xt+1)+<n(xt+l_Xt)+£t7 Xt+1> > <77 Xt+1 i) +& +gu Xt+1> =0
s 1
= V(u) - ¥(xj) + <€tau Xt+1> > ;< X{p1 — X(), X1 — u>

27

s W(xyy) — U(u) + (€, x5y, —u) < —% (811 = %), X541 —) (8.2.3)
Pluggin in Equation (8.2.3) in Equation (8.2.2), we get
(€53 =)+ W) = () < (€30 = i) = (OcEya = x40~ w)
S T T [P 1

2n 2n 2n
. . . 2 2 2
(Using the identity, 2 (x —y,x —2z) =[x — y[|5 + [[x — z[[5 — [ly — z[3)

= (& x{ —x{) + (8.2.4)

Combining Equation (8.2.1) and Equation (8.2.4), we get

2 2
x5 —ull; = [|x541 — ul;

2n

1—nL
Tnn th _Xt+1H2

Ei; [F(xi1) — F(w)] <Ei (67 — VF(x7).x] —xjyq) —

A

Ei;

t

(8.2.5)

g — w3 — [|xips — ulf;
2n

n s s\ (12
(Using Young’s Inequality)

Now upper bounding [E;: {HE? - Vf(xg)Hg},

Ei; (116 = VEGI] = oy [[[(Vir () = Vi (&) = (V) = V&3]
<By [V 0) - VS I (Using E[IX - B[X]IZ] = B [IX] - IEX])3)
= B [[[(Vir () = Vg () = (Vi (271 - Vfﬁ(x*))|l3}
< 2B [[|Vfig () = Vi (x| [5] + 2Bsg [[[953 (557 = Vi ()3 (8.2.6)

Lemma 8.1. If f; is convex and L-smooth, we have
[V 1:(x) = Vi < 2L () = filx") = (Vi) x = x7)]
Proof. Define ¢(x) := fi(x) — fi(x*) — (Vfi(x*),x — x*). Therefore V¢ (x) = V fi(x) — V fi(x*).

L 2

0= 60) < 80— TV00x) < 60) + (Vo), ~ T Volx)) + £

1
5 HLV¢(X)

= 6() ~ 57 V603
— |[V£i(x) = VL) < 2L[fi(x) = fi(x*) = (Vfi(x*),x — x7)]

Using Lemma 8.1 in Equation (8.2.6), we get
Ei; 1167 — Vf(Xf)Hg} SALE;; [fi (x7) = fir (x*) = (V fig (x7), %7 = x*) + fir (X°71) = fis (x7) = (V fir (x7), %° 71 = x7)]

= AL [f(x}) = f(x") = (VF(x"),x] = x") + f(X°71) = f(x") = (V[(x"), %" = x")]
Since OF (x*) = V f(x*) + g* = 0 for some g* € 9¥(x*). Using this we get

Eig [I€7 = VAGI3| <AL [£0) = F() + (g7 x5 = x7) + f(&1) = (x) + (g, %" = x")]

<AL [f(xf) = F(x) + W(xp) = W(x) + F(XT) = f(x) + U - ¥(x)]
(Using the convexity of ¥)

28

=4L [F(x}) — F(x*) + F(x* ") — F(x*)] (8.2.8)

Plugging in Equation (8.2.8) in Equation (8.2.7), we get

It = wll3 - By [[lxts = ully]

E; [F(xi{4) - F(u)] < 12—77§L (F(x}) — F(x*) + F(x*™') — F(x")) + o (8.2.9)
Choosing n = %L, we get
s — w3 — B |||z, — ulf;
Ei; [F(xi1) — F(u)] < %(F(xj) —F(x*)+ F(x*) — F(x*)) + : Zn{H i ||2] (8.2.10)

Telescoping equation (8.2.10) for u = x*, from ¢t = 0 to m, — 1, dividing by my, and taking the full expectation, we
get

3R mil F(Xerl) F(*) <FE mil F(Xf) F(*) +F(~s—1) F(*) + Hx(s) _X*”g - fons —x* Z
—= —F(x —= —F(x X - F(x
t=0 s B i—o M 2n/3.m
(8.2.11)
Rearranging Equation (8.2.11) we have
me—1 2 2
" F(x] —F(x*)) - (F(x),) — F(x* x5 — x5 — ||x5,. — x*
i[5 FOt)] [0 = P = (i) = D) ey, 1= X0 = o, =
t=0 ms ms 277/3777/5
(8.2.12)
Because F' is convex, therefore F(x°) < - Mot F(x5,,) from the definition of %* = = St xg . Also
x5, =x§". Therefore Equation (8.2.12) becomes
2
F(x3) — F(x*)) — (F(x$T!) — F(x* XS—X*2— xStL _ ¢x
I/E [F(is) —F(X*)] < E ((XO) (X)) ((XO) (X)) +F()~(571) —F(X*) + || 0 H2 H 0 2
my 2n/3.ms
(8.2.13)

Using ms = 2m,_1, and rearranging the terms in Equation (8.2.13), we get

2

XSJrl—X* F s+1 —F * s _ x (|2 F s_F *
E F(is) _F(X*) 4 H 0 2 (XO) (X) S 271E F(isfl) _F(X*) 4 ||XU X H2 (XO) (X)
4n/3.ms 2m 4dn/3.ms_1 2ms_1
Xl — x* 2 F 1y F(x*
S 27SE F()NCO) _F(X*) + H 0 2 (XO) (X)
4n/3.mq 2my
(8.2.14)
Relaxing the inequality in Equation (8.2.14), we get
%2 *
6 =x*1, | Fxb) - F(x*)

E[F(x°) — F(x*)] <27° |F&X") — F(x*) +

4n/3.mg 2my

Since X% = x} = x® and mg > 1, we have

. o FE) = F(x*) |lxb— 7|3
E[F(%') = F(x")] £ =25 205477% 2

Now let F(x?) — F(x*) < A and ||x? — x*
have

; < ©. By setting S = logQ(%) and mg = % and with n = %, we

E[F(x*) - F(x")] < O(e)

Therefore SVRG++ has a gradient complexity of O (nS + 29 mo) = O(nlog (%) + ?), clearly an improvement

over SGD for the same kind of objective.

29

9 Non convex Gradient method

For non-convex functions, we cannot talk about the convergence to the global minimizer in general, but instead we
talk about how close we can reach a p!* order stationary point. Here we talk about convergence to an e-first order
stationary point as defined in Section 1.12.

The results shown for sub-gradient descent in Section 3 have the assumption that f is convex. But interestingly we
can remove this assumption and still talk about convergence to approximate first order stationary points.

In this section f is a general smooth function (possibly non-convex) and the gradient descent algorithm remains
the same, i.e.,

Xep1 = X¢ — NV f(xy)

9.1 Convergence

Using the fact that f is L-smooth, we have
L 2
fxe1) < f(xe) +(Vf(xe), %41 — Xt) + 5 e = xell
— Fo) = IV A+ 22 191

— fx) —m (1—“%) 19511

Choosing n; = % we get
1
Fxerr) < fxe) = 57 V£ (9.1.1)
Telescoping equation (9.1.1) from ¢t =1 to T,
Flxria) < ZHW (o)

1
= S0 < f6a) = g7 min VGl

— 12121 ||Vf(xt)||2 QL(f(Xl?rf f(X*))

(9.1.2)

Therefore to have 1gi<rlT IV f(x:)|ly < € we would require T' > M = O (&%) iterations.

10 Non convex Stochastic Gradient method

As we have seen in Section 7, we can use the stochastic gradient to update parameters and still show convergence to
the global minima. In a similar way, we can show an analysis for a general smooth non-convex function f € Ci’l (R%)
for convergence to an e-first order stationary point.

We call a point x an (e, A)-solution if P{||Vf(x)|, <e} > 1 — A for some ¢ > 0 and A € (0,1). The first
non-asymptotic convergence rate for SGD is in [3].

10.1 Convergence

The stochastic gradient at x is denoted as g(x). We assume the below two properties about the stochastic gradient
for all x € R?.

1 E[g(x)] = V/(x)
2. E[llgx) - V£(x)[3] < 02

30

The update rule for the parameters is
Xt4+1 = Xt — ntg(xt)

We define the deviation of the stochastic gradient at the ¢-th iteration as d; = g(x;) — V f(xy).
From the smoothness of f, we have

f(xee1) < f(xe) + (V) %041 — x¢) + % o1 — %[5
2
= k) = (V100, 90x0) + T2)
2
= 00 = (V)80 4+ V7)) + 2 18, + 9 £
L77t

= 1) m IV SN — e (VS (x0),80) +
= s = (=) 196l - Ln?> (0.8 + 0 o

va(xt)”z +2(V f(x¢),6:) + H5t||

Rearranging Equation (10.1.1) and Telescoping from ¢t = 1 to T, we get

T

Z()|Vf<xt>||2<f<xl Feren) = S — L) (VF(xe). Znt AT

= t=1

T
< f(xa)= (e — Ln?) (V f(x), Znt 16¢15

t=1

Since x; depends only on the past ¢t — 1 iterations, we have

E[Vf(x:),6:) [[t—1]] =0
Taking full expectation on Equation (10.1.2), we get

2 T

S (- 28 (1902 = g6 06+ 2275

t=1 t=1
1

1 . 2
= <
— 7 mnE[IV/e0I] < 5

21 2ny — L77t2
t=

W) = 16) Z”]

Define Ag := f(x1) — f(x*), and 7 = min {f, —} for ¢ € [T]. Therefore,
1 1 20,)
— E < T
7 min B (I £0015] < 7ot | 220 4 1ot
< % + To?n?
B Tm
— A +
= LT a

2A¢ oVT
< —
_LTmX{L D}+GJ\/T

2A0 + QA()O' +Q
T LDVT VT

QAO g 2A0
= — — | D i
T +ﬁ(+LD)

2LA o 2A
. 2 < . 2 < 0 0
— B | i 197Gl < min B (1900015 <

+—(Lp+22

.= B
T T D T

31

(10.1.1)

(10.1.2)

(10.1.3)

The optimal value of D is D = 2%0, substituting we have
QLAO 20
E[IV/(x)l3] < NGV NY
winE|[IVFex)llp| < ==+ Nk

Now gél[lj{l]E [||Vf(xt)||§] <e& = E Lrg[l% ||Vf(xt)2} < e. Therefore we require

P L 195601 < 2 = P{vselE <@} 214
From Markov’s inequality we have

min ||V f ()5

te(T] 1
Py Br S Y
P { i 1976013 < A8 > 1- 5
te[T) A
Taking A = %, we now require
Br < Aé?

2LAO g 2A0 2
R — <
+ 77 (LD +) < Ae

Therefore T > QLAO and T > A2 : (LD + QAO) or T > QLAO + A2 7 (LD + 2A°) , then we have

P{mln IV f(x¢) H2 <e } >1—-A

te[T)

P{mln IV f(xe)ly < e} >1-—A

te[T)

Therefore for T'= O (A%Z + A‘;—;) we have an (e, A) solution.

11 Faster Non convex Stochastic algorithms

Just like as in the convex case, SGD suffers from slow convergence due to its high variance in the Non convex domain
also. To ensure convergence to a stationary point, we have to use a very small learning rate. The SVRG algorithm as
in Section 8.1, assumes convexity, whereas [7] show that even for non convex optimization SVRG is faster than SGD.

We assume that f has a finite sum representation and has L-Lipschitz gradient, that is
1 n
==Y filx) and |Vf(x) =Vl <LIx—yll, VxyeR?

The algorithm stays the same as Algorithm 2, with some modified notations

32

https://en.wikipedia.org/wiki/Markov%27s_inequality

Algorithm 4: SVRG (x°, T,m, {n;}75")

Initialize : x° = x0, = x, step sizes {n; > 0}/",', S = [T/m]
for s=1,2,...,5—1do

XSH—an
gotl = 12sz
fort—O,l,..., —1do

Sample i ~ U([n])
9+1 vfz(9+1) Vfl'(f(s) + gs+1
xfi% =x; T =it
end
)~(S+1 — Xs+1
m

end

Output: Iterate x, chosen randomly from {{x;*'}} }

11.1 Convergence

From the algorithm we have
Vit = V(T - VAE) + g7
— E[|Vi*] =E[IVAG) - VAE) + 73]
—E|:vaz (3 = V(RS + g5 — VST + VGt M
< 2B [[[VFa] + 2B [[[(Thi(™) = VAE) - E[VAE) - VHE)]])]
< 2B [|[Vre] + 2B [VA6t - v hiE0)|3]

<2 [Vl + 2L%E [|[xi+t - %] (11.1.1)

From the smoothness of f, we have

L
B [Fih] < B £ + (V76 xith - i) + 5 it - e] (11.12)
Using x 11 = x;™' — nvi™", Inequality (11.1.2) becomes
B (76t < E | 6™ =[x + 5 i

Considering the Lyapunov function

R =E[f0t) + e x|

for some sequence {c;}/",' as we will formulate later. To bound Rfj_rl in terms of Ry we need to bound

i = %[

B [[pxitt = [5] = B[t -t)
et] - 2 (vt - %)

=B [[vit s + [l = x] - 2mE (V6 x5t - %))

=E |2} |vi*'|;

I

b 2] 2 [[2+ 2 -])

<E |n¢ lvi'|I;

(Using Fenchel Young’s inequality for some ;)

33

Using Equation (11.1.3) and Equation and upper bounding Rfill, we get

L -
Rift < [) = |96+ S | ;HHM[M Ve o ™ 5]

+2eceane [VA6 + 36 i - %]

<B | ")~ (- ;’7> 193+ (B + e) B [l]

+ (ct+1 + crp1meBe) E {HXSJA ~2H2} (11.1.4)

Using Equation (11.1.1) in Equation (11.1.4), we get

s s Ct+17) s 2
Rtj-_ll <E [f(xtﬂ)] - (nt T T3, —n;L— 26t+177t2> {va i) Hz}
<512
+ [eer1 (M +nmeBe + 207 L%) + nf L E {||xs+1 Hz} (11.1.5)
Recursively defining ¢; := cy1(1 + n:8¢ + 202 L?) + n? L3, and Ty := (n; — C”ﬁ%m —n2L — 2c4111m?), we have

R < R TR [V iG]

RS _ RS+1 RS+1 _ RSJrl
E sty 12| < o t41 11.1.
= |:Hv'f(Xt)H2:| - Ft - mint Ft (6)
Defining ~,, := min; I'; and initializing ¢,, := 0, 5, = n >=, By = § > 0. Therefore
RSF = [f(xjjl)] E [f(S'H)] since x°T! = x5+
RS+1 [f(xé“)] E[f(x%)] since X° = XSH
Telescoping Equation (11.1.6) from ¢ = 0 to m — 1, we get
m—1 ~ ~
sy2] _ E[f(E) = f(xH)
B [|v76s+))2] = 2L } (1117)
t=0 Tn
Summing Equation (11.1.7) over all epochs, we get
L (o] - BV =169 El6) st
vl Tn - Ty
s:O t=0
Therefore with high probability x, will satisfy
E[f(x°) — f(x*
E [va(xa)”ﬂ < [T)y &) (11.1.8)

If we choose) := £ for 0 < pp <land 0 <a <1, 3= m = |n®*/2/3p0|. Using the recursive definition of

¢ and that ¢, = 0, we will have

L
na/??

pL(+6)™ -1
n2o 0

where 6 := 2n?L% + 1 = iﬁg + n30/2 < niﬁj% Therefore we have

Co =

mL oL _ poL In-c/2
af 2 a/2 T a2 — < polmn
n20 2uiL + pone/ 2uoL +n

And

3“0 L”Ba/2/3/LOJ
(1+0) —1:<1+n30/2> —1<e—-1

34

Therefore ¢y < pon~=*/?L(e — 1).
We are still left to lower bound -,

. Ct+1
Yo = min(y — %ﬂ —0°L = 2¢ci1n°)
CoT 2 2 v
>(n——L —n?’L—2 >
> (n 5 " on’) = 73

where v is a universal constant depending on p that can be calculated.
Now the Equation (11.1.8) becomes

Ln°E [f(x°) = f(x)]
Tv

E[IV/ ()] <

From Corollary 2 in [7], the number of calls to the stochastic sub gradient oracle per iteration such that the output
of the SVRG algorithm is an e-first order stationary point is

O(n+=5%) ifa<2/3

IFO calls = N
O (n+1y) if >2/3

That is, for &« = 2, we have a per epoch iteration complexity of © (n + "Z 3) that is better than previously discussed

3 b
bounds of both Gradient Descent and SGD in the non-convex domain.

35

References

Zeyuan Allen-Zhu. Ieml 2017 tutorial: Recent advances in stochastic convex and non-convex optimization.

Zeyuan Allen-Zhu and Yang Yuan. Improved svrg for non-strongly-convex or sum-of-non-convex objectives.
In International conference on machine learning, pages 1080-1089, 2016.

S. Ghadimi and G. Lan. Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming.
ArXiv e-prints, September 2013.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
In NIPS. Citeseer, 2013.

Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining an o (1/t) convergence
rate for the projected stochastic subgradient method. arXiv preprint arXiv:1212.2002, 2012.

D. Needell, N. Srebro, and R. Ward. Stochastic Gradient Descent, Weighted Sampling, and the Randomized
Kaczmarz algorithm. ArXiv e-prints, October 2013.

S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic Variance Reduction for Nonconvex Opti-
mization. ArXiv e-prints, March 2016.

Mark Schmidt. Non smooth, non finite, and non convex optimization.
Mark Schmidt. Smooth, finite, and convex optimization deep learning summer school.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results
and optimal averaging schemes. In International Conference on Machine Learning, pages 71-79, 2013.

Suvrit Sra. Introduction to large-scale optimization, June 2015.

36

	Definitions
	Convex sets
	Properties
	Examples

	Convex functions
	Properties
	Examples

	Strongly Convex functions
	Properties

	Smooth functions
	Properties

	Condition number
	Fenchel Conjugate
	Properties
	Examples

	Sub-gradients
	Properties
	Examples

	Projection operator
	Properties

	Fermat's rule, Normal Cone and first order condition
	Lagrangian Dual problem
	KKT Conditions
	Stationary points

	Lower bounds on gradient based methods
	Sub-gradient method
	General convex functions
	Convergence

	Strongly convex functions
	Convergence

	Smooth functions
	Convergence

	Smooth and Strongly convex functions
	Convergence

	Projected Sub-gradient method
	Proximal Gradient Descent
	Proximity operator
	Examples :
	Understanding the operator

	Convergence

	Conditional Gradient method (Frank Wolfe algorithm)
	Convergence
	Examples

	Stochastic Gradient Descent
	General convex functions
	Convergence

	Strongly convex functions
	Convergence with uniform averaging
	Convergence with weighted averaging
	Convergence of last iterate
	Convergence using Tail Averaging

	Smooth functions
	Convergence

	Smooth and Strongly convex functions
	Convergence
	Convergence of Bias and Variance

	Some faster stochastic algorithms
	Stochastic Variance Reduced Gradient (SVRG)
	Convergence

	SVRG++
	Convergence

	Non convex Gradient method
	Convergence

	Non convex Stochastic Gradient method
	Convergence

	Faster Non convex Stochastic algorithms
	Convergence

