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It has been empirically observed that the performance of Stochastic Gradient Algorithms depend on the sampling
method involved in the iterations. The literature on the analysis of SGD based methods consider an unbiased
estimator of the gradient at each step and there are decent tight bounds that agree with empirical observations in
a good number of the practical scenarios.

When the empirical risk function F (w,X ) of the data X = {xi}ni=1, can be written as an average of the sample risk
f(w,xi), a naive way to pick an unbiased estimator of the gradient ∇F (w,X ), is to uniformly pick a data point
xξi where ξi ∼ U [n] and compute the gradient of its risk ∇f(w,xξi). This estimator of the gradient is unbiased by
the below argument

F (w,X ) =
1

n

n∑
i=1

f(w,xi) (0.0.1)

∴ ∇F (w,X ) =
1

n

n∑
i=1

∇f(w,xi)

Eξi [∇f(w,xξi)] =
1

n

n∑
i=1

∇f(w,xi) (Because ξi ∼ U [n])

= ∇F (w,X )

Because the expectation of ∇f(w,xξi) is the exact gradient of the empirical risk function, therefore it is an unbiased
estimator.

It has been observed that incorporating random reshuffling into stochastic gradient implementation helps achieving
better performance. To elaborate further, the algorithm is run multiple times on the data where each run is indexed
by k ≥ 1 and is refereed to as an epoch. The data is then randomly reshuffled via a random permutation σk for the
next epoch. Therefore the ith iteration of the kth epoch samples xσk(i) for computing the gradient estimate. This
method of sampling data points is very efficient in practice as it reduces the random access overheads compared to
the i.i.d. based sampling method.

This article mostly relies on the recent work [1], in which the authors show that Stochasic Gradient Descent al-
gorithm with random reshuffling outperforms independent sampling with replacement by showing that the mean
square error of the iterates at the end of each epoch is of the order O

(
η2
)
. This is a significant improvement

compared to the traditional Stochastic Gradient Descent with i.i.d. sampling where the same quantity is of the
order O (η).

Let us consider minimizing an empirical risk function F (w,X ) as defined in (0.0.1). Also let us assume that F is
strongly convex allowing us to ensure that its minimizer w∗ is unique. We also assume that f(w,xi) is smooth and
continuously differentiable for all i.
Let F (w,X ) be µ-strongly convex, and ∇f(w,xi) be L-Lipschitz continuous, i.e.,

‖∇f(w1,xi)−∇f(w1,xi)‖2 ≤ L ‖w1 −w2‖2 ∀ i ∈ [n] and ∀ wi,w2 ∈ Rd (0.0.2)

〈∇F (w1,X )−∇F (w2,X ),w1 −w2〉 ≥ µ ‖w1 −w2‖22 ∀ wi,w2 ∈ Rd (0.0.3)

Before directly analyzing the random reshuffling for SGD, we will first see how the traditional SGD algorithm with
constant step-size using i.i.d samples of the data points, converges to a neighborhood.

1



1 Stochastic Gradient Descent with i.i.d. sampling

The traditional SGD algorithm translates into a repeated update strategy as below

wi = wi−1 − ηt∇f(wi−1,xξi) (1.0.1)

When the step-size ηt constant equal to η, (1.0.1) becomes

wi = wi−1 − η∇f(wi−1,xξi) (1.0.2)

1.1 Convergence Analysis

From (1.0.2) we obtain

wi −w∗ = wi−1 −w∗ − η∇f(wi−1,xξi)

E
[
‖wi −w∗‖22

]
= E

[
‖wi−1 −w∗ − η∇f(wi−1,xξi)‖

2
2

]
= E

[
‖wi−1 −w∗‖22

]
+ η2E

[
‖∇f(wi−1,xξi)‖

2
2

]
− 2ηE [〈wi−1 −w∗,∇f(wi−1,xξi)〉]

= E
[
‖wi−1 −w∗‖22

]
+ η2E

[
‖∇f(wi−1,xξi)‖

2
2

]
− 2ηE [〈wi−1 −w∗,∇F (wi−1,X )〉] (1.1.1)

From the strong convexity of F at w∗, using (0.0.3), we have

〈∇F (wi−1,X )−∇F (w∗,X ),wi−1 −w∗〉 ≥ µ ‖wi−1 −w∗‖22
=⇒ 2ηE [〈∇F (wi−1,X ),wi−1 −w∗〉] ≥ 2µηE

[
‖wi−1 −w∗‖22

]
(1.1.2)

Plugging (1.1.2) in (1.1.1) we get

E
[
‖wi −w∗‖22

]
≤ E

[
‖wi−1 −w∗‖22

]
+ η2E

[
‖∇f(wi−1,xξi)‖

2
2

]
− 2µηE

[
‖wi−1 −w∗‖22

]
= (1− 2µη)E

[
‖wi−1 −w∗‖22

]
+ η2E

[
‖∇f(wi−1,xξi)‖

2
2

]
Assuming that the stochastic gradient norm is upper bounded by a constant G in the domain of optimization,

E
[
‖wi −w∗‖22

]
≤ (1− 2µη)E

[
‖wi−1 −w∗‖22

]
+ η2G2 (1.1.3)

Let ri := E
[
‖wi −w∗‖22

]
, we have

ri ≤ (1− 2µη)ri−1 + η2G2

≤ (1− 2µη)ir0 +

i∑
j=0

(1− 2ηµ)jη2G2

≤ (1− 2µη)ir0 + η2G2
∞∑
j=0

(1− 2ηµ)j

= (1− 2µη)ir0 +
η2G2

2ηµ
(Assuming µ <

1

2µ
)

= (1− 2µη)ir0 +
η

2

G2

µ
(1.1.4)

Therefore as i→∞, E
[
‖wi −w∗‖22

]
converges to a neighborhood of size upper bounded by η

2
G2

µ = O (η).

2 Stochastic Gradient Descent with Random Reshuffling

The iteration update for SGD with Random Reshuffling for kth epoch is

wk
i = wk

i−1 − η∇f(wk
i−1,xσk(i)) i = 1, . . . , n (2.0.1)
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with the boundary condition of

wk
0 = wk−1

n

It is to note that the gradient estimator ∇f(wk
i−1,xσk(i)) is a biased estimator of ∇F (wk

i−1,X ) due to the properties
of a random permutation. Let us see how.

The samples are now no longer picked independently from each other. This is because of the constraint that each
data point has to be picked exactly once. To proof that this estimate is a biased estimate, we will first have a closer
look at the properties of the permutation random variable σk.

σk(i) 6= σk(j) 1 ≤ i 6= j ≤ n

P
{
σk(i) = j

}
=

1

n
1 ≤ j ≤ n

P
{
σk(i) = j | σk(1 : i)

}
=

{
1
n−i , j 6∈ σk(1 : i)

0, j ∈ σk(1 : i)

where σk(1 : i) is the collection of all the indexes of the permutation σk from 1 to i.

Now let us see why ∇f(wk
i−1,xσk(i)) is a biased estimate of ∇F (wk

i−1,X ).

E
[
∇f(wk

i−1,xσk(i)) | wk
i−1, σ

k(1 : i− 1)
]

=
1

n− i+ 1

∑
j 6∈σk(1:i−1)

∇f(wk
i−1,xj){

6= ∇F (wk
0 ,X ) i > 1

= ∇F (wk
0 ,X ) i = 1

But because every sample is picked exactly once, therefore the sampled average of the estimators within an epoch
is an unbiased estimator.

1

n

n∑
i=1

∇f(wk
i−1,xσk(i)) = ∇F (wk

i−1,X )

2.1 Convergence Analysis

Let us define gradient noise variance at w∗ as V, i.e.,

V :=
1

n

n∑
i=1

‖∇f(w∗,xi)‖22 (2.1.1)

We will first look at the convergence of the first iterates of each epoch, followed by the convergence of all the iterates
within an epoch.

For this, we will express the first iterate of the immediate next epoch k+1 in the terms of the iterates in the current
epoch k.

wk+1
0 = wk

n

= wk
n−1 − η∇f(wk

n−1,xσk(n))

= wk
0 − η

n∑
i=1

∇f(wk
i−1,xσk(i))

= wk
0 − ηn∇F (wk

0 ,X )− η
n∑
i=1

(
∇f(wk

i−1,xσk(i))−∇f(wk
0 ,xσk(i))

)
(2.1.2)

Defining gσk(i)(w
k
i−1) as the incremental gradient noise, or the mismatch of the gradient approximations evaluated

at wk
0 and wk

i−1,

gσk(i)(w
k
i−1) := ∇f(wk

i−1,xσk(i))−∇f(wk
0 ,xσk(i)) (2.1.3)
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Let us also define the error vector as

w̃k
0 := w∗ −wk

0 (2.1.4)

Simplifying (2.1.2) using (2.1.3) and (2.1.4), we get

w̃k+1
0 = w̃k

0 + ηn∇F (wk
0 ,X ) + η

n∑
i=1

gσk(i)(w
k
i−1)

∥∥w̃k+1
0

∥∥2
2

=

∥∥∥∥∥w̃k
0 + ηn∇F (wk

0 ,X ) + η

n∑
i=1

gσk(i)(w
k
i−1)

∥∥∥∥∥
2

2

≤ 1

t

∥∥w̃k
0 + ηn∇F (wk

0 ,X )
∥∥2
2

+
η2

1− t

∥∥∥∥∥
n∑
i=1

gσk(i)(w
k
i−1)

∥∥∥∥∥
2

2

(Using Jensen’s inequality, 0 < t < 1)

≤ 1

t

∥∥w̃k
0 + ηn∇F (wk

0 ,X )
∥∥2
2

+
η2n

1− t

n∑
i=1

∥∥gσk(i)(w
k
i−1)

∥∥2
2

(Sub-additivity of `2-norms) (2.1.5)

Now we will upper bound both the terms in (2.1.5).

n∑
i=1

∥∥gσk(i)(w
k
i−1)

∥∥2
2
≤

n∑
i=1

L2
∥∥wk

i−1 −wk
0

∥∥2
2

= L2
n∑
i=1

∥∥∥∥∥∥
i−1∑
j=1

(wk
j −wk

j−1)

∥∥∥∥∥∥
2

2

≤ L2
n∑
i=1

(i− 1)

i−1∑
j=1

∥∥wk
j −wk

j−1
∥∥2
2

(Sub-additivity of `2-norm)

= L2
n∑
j=1

n∑
i=j+1

(i− 1)
∥∥wk

j −wk
j−1
∥∥2
2

(Equating lower triangualar sums in 2 ways)

≤ n2L2

2

n∑
j=1

∥∥wk
j −wk

j−1
∥∥2
2

(2.1.6)

It remains to bound
∑n
j=1

∥∥wk
j −wk

j−1
∥∥2
2

now∥∥wk
j −wk

j−1
∥∥2
2

= η2
∥∥∇f(wk

j−1,xσk(j))
∥∥2
2

≤ 2η2
∥∥∇f(wk

j−1,xσk(j))−∇f(w∗,xσk(j))
∥∥2
2

+ 2η2
∥∥∇f(w∗,xσk(j))

∥∥2
2

≤ 2η2L2
∥∥w̃k

j−1
∥∥2
2

+ 2η2
∥∥∇f(w∗,xσk(j))

∥∥2
2

(Using the smoothness of f , (0.0.2))

≤ 2η2L2
(

2
∥∥w̃k

0

∥∥2
2

+ 2
∥∥wk

j−1 −wk
0

∥∥2
2

)
+ 2η2

∥∥∇f(w∗,xσk(j))
∥∥2
2

= 4η2L2
∥∥w̃k

0

∥∥2
2

+ 4η2L2
∥∥wk

j−1 −wk
0

∥∥2
2

+ 2η2
∥∥∇f(w∗,xσk(j))

∥∥2
2

(2.1.7)

Summing up (2.1.7) over j we get

n∑
j=1

∥∥wk
j −wk

j−1
∥∥2
2
≤ 4η2L2n

∥∥w̃k
0

∥∥2
2

+ 2η2nV + 4η2L2
n∑
j=1

∥∥wk
j−1 −wk

0

∥∥2
2

= 4η2L2n
∥∥w̃k

0

∥∥2
2

+ 2η2nV + 4η2L2
n∑
j=1

∥∥∥∥∥
j−1∑
i=1

(wk
i −wk

i−1)

∥∥∥∥∥
2

2

= 4η2L2n
∥∥w̃k

0

∥∥2
2

+ 2η2nV + 4η2L2
n∑
j=1

j−1∑
i=1

(j − 1)
∥∥wk

i −wk
i−1
∥∥2
2
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= 4η2L2n
∥∥w̃k

0

∥∥2
2

+ 2η2nV + 4η2L2
n−1∑
i=1

n∑
j=i+1

(j − 1)
∥∥wk

i −wk
i−1
∥∥2
2

(Equating lower trangular sums in 2 ways)

≤ 4η2L2n
∥∥w̃k

0

∥∥2
2

+ 2η2nV + 2η2L2n2
n−1∑
j=1

∥∥wk
j −wk

j−1
∥∥2
2

≤ 4η2L2n
∥∥w̃k

0

∥∥2
2

+ 2η2nV + 2η2L2n2
n∑
j=1

∥∥wk
j −wk

j−1
∥∥2
2

=⇒
n∑
j=1

∥∥wk
j −wk

j−1
∥∥2
2
≤

4η2L2n
∥∥w̃k

0

∥∥2
2

+ 2η2nV
1− 2η2L2n2

(
Rearranging terms for η ≤ 1√

2Ln

)
(2.1.8)

Plugging back (2.1.8) in (2.1.6) we get

n∑
i=1

∥∥gσk(i)(w
k
i−1)

∥∥2
2
≤ η2L2n3

1− 2η2L2n2
(2L2

∥∥w̃k
0

∥∥2
2

+ V) (2.1.9)

Now we are left to bound the first term in (2.1.5)∥∥w̃k
0 + ηn∇F (wk

0 ,X )
∥∥2
2

=
∥∥w̃k

0

∥∥2
2

+ 2ηn
〈
w̃k

0 ,∇F (wk
0 ,X )

〉
+ η2n2

∥∥∇F (wk
0 ,X )

∥∥2
2

=
∥∥w̃k

0

∥∥2
2
− 2ηn

〈
w̃k

0 ,∇F (w∗,X )−∇F (wk
0 ,X )

〉
+ η2n2

∥∥∇F (w∗,X )−∇F (wk
0 ,X )

∥∥2
2

≤ (1− 2ηµn+ η2n2L2)
∥∥w̃k

0

∥∥2
2

(Using (0.0.2) and (0.0.3))

≤
(

1− 2ηµn

3

)2 ∥∥w̃k
0

∥∥2
2

(
For η ≤ 2µ

3L2n

)
(2.1.10)

Plugging back (??) and (2.1.10) in (2.1.5), we get

∥∥w̃k+1
0

∥∥2
2
≤ 1

t

(
1− 2ηµn

3

)2 ∥∥w̃k
0

∥∥2
2

+
η2n

1− t
η2L2n3

1− 2η2L2n2
(2L2

∥∥w̃k
0

∥∥2
2

+ V) (2.1.11)

For t = 1− 2ηµn
3 and assuming η is sufficiently small such that 1− 2η2L2n2 ≥ 3

4 or η ≤ 1√
8Ln

, we get

∥∥w̃k+1
0

∥∥2
2
≤
(

1− 2ηµn

3

)∥∥w̃k
0

∥∥2
2

+
2η3L2n3

µ
(2L2

∥∥w̃k
0

∥∥2
2

+ V)

≤
(

1− 2ηµn

3
+

4η3L4n3

µ

)∥∥w̃k
0

∥∥2
2

+
2η3L2n3

µ
V

≤
(

1− ηnµ

2

)∥∥w̃k
0

∥∥2
2

+
2η3L2n3

µ
V (2.1.12)(

Assuming
(

1− 2ηµn

3
+

4η3L4n3

µ

)
≤
(

1− ηnµ

2

)
or η ≤ µ√

24L2n

)
Unrolling (2.1.12) we get

∥∥w̃k+1
0

∥∥2
2
≤
(

1− ηnµ

2

)k ∥∥w̃0
0

∥∥2
2

+
2η3L2n3

µ
V

k∑
j=1

(
1− ηµn

2

)j
≤
(

1− ηnµ

2

)k ∥∥w̃0
0

∥∥2
2

+
4η2L2n2

µ2
V

=⇒ E
[∥∥w̃k+1

0

∥∥2
2

]
≤
(

1− ηnµ

2

)k
E
[∥∥w̃0

0

∥∥2
2

]
+

4η2L2n2

µ2
V (2.1.13)

Combining all the assumptions on η we have considered so far, we have η ≤ min
{

2µ
3L2n ,

1√
8Ln

, µ√
24L2n

}
. Therefore

it suffices to have η ≤ µ
5L2n .
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From (2.1.13) we see that the first iterate of each epoch converges linearly to a neighborhood of of size 4η2L2n2

µ2 V =

O
(
η2
)
. We can now proceed by proving the same for any iterate within any epoch.

E
[∥∥w̃k

i

∥∥2
2

]
≤ 2E

[∥∥wk
i −wk

0

∥∥2
2

]
+ 2E

[∥∥w̃k
0

∥∥2
2

]
≤ 2E


∥∥∥∥∥∥
i−1∑
j=0

(wk
j+1 −wk

j )

∥∥∥∥∥∥
2

2

+ 2E
[∥∥w̃k

0

∥∥2
2

]

≤ 2

i−1∑
j=0

E
[∥∥wk

j+1 −wk
j

∥∥2
2

]
+ 2E

[∥∥w̃k
0

∥∥2
2

]

= 2η2
i−1∑
j=0

E
[∥∥∇f(wk

j ,xσk(j))
∥∥2
2

]
+ 2E

[∥∥w̃k
0

∥∥2
2

]

≤ 2η2L2
i−1∑
j=0

E
[∥∥w̃k

j

∥∥2
2

]
+ 2E

[∥∥w̃k
0

∥∥2
2

]
Summing (2.1.14) over i, we get

n−1∑
i=1

E
[∥∥w̃k

i

∥∥2
2

]
≤ 2η2L2

n−1∑
i=1

i−1∑
j=0

E
[∥∥w̃k

j

∥∥2
2

]
+ 2nE

[∥∥w̃k
0

∥∥2
2

]

= 2η2L2
n−1∑
j=0

n−1∑
i=j+1

E
[∥∥w̃k

j

∥∥2
2

]
+ 2nE

[∥∥w̃k
0

∥∥2
2

]

≤ 2η2L2n

n−1∑
j=0

E
[∥∥w̃k

j

∥∥2
2

]
+ 2nE

[∥∥w̃k
0

∥∥2
2

]

= 2η2L2n

n−1∑
j=1

E
[∥∥w̃k

j

∥∥2
2

]
+ (2n+ 2η2L2n)E

[∥∥w̃k
0

∥∥2
2

]

=⇒
n−1∑
i=1

E
[∥∥w̃k

i

∥∥2
2

]
≤ 2n(1 + η2L2)

1− 2η2L2n
E
[∥∥w̃k

0

∥∥2
2

]
(2.1.14)

Letting k →∞, we have

lim sup
k→∞

n−1∑
i=1

E
[∥∥w̃k

i

∥∥2
2

]
= O

(
η2
)

(2.1.15)

Since every term in the sum in (2.1.15) is non-negative, we have

lim sup
k→∞

E
[∥∥w̃k

j

∥∥2
2

]
≤ lim sup

k→∞

n−1∑
i=1

E
[∥∥w̃k

i

∥∥2
2

]
= O

(
η2
)

(2.1.16)

Now if we compare SGD with i.i.d. sampling and with random reshuffling, we could still see a potential looseness.
Comparing (1.1.4) and (2.1.13) we see that due to the small step-size requirement in random reshuffling, the rate of
convergence to the neighborhood is off by a factor of n. The linear term in (1.1.4) is upper bounded by exp{−2µηi}
where i is the iteration index, whereas the linear convergence term in (2.1.13) is upper bounded by exp

{
−ηnµk2

}
where k is the epoch index. So the iteration index of the kth epoch is i = kn. Substituting this we get the
linear convergence rate as exp

{
−ηµi2

}
. The step-size restriction in traditional SGD is of the order 1

L whereas the

restriction that random reshuffling has in its analysis is of the order µ
L2n which is lower by an order of Ln

µ . It will
be interesting to see if the restriction on the step size can be improved.
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