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This article focuses on one of the open questions put up by Léon Bottou [1] in 2009 where he observes a contrasting
behavior in the performance of Stochastic Gradient Descent (SGD) when the strictly convex component functions
of the objective function are chosen without replacement in comparison to when they are chosen with replacement.
When sampled without replacement, observations suggest that the convergence rate in expectation is very close to
t−2 where t is the number of iterations of SGD under the choice of sampling. From the light of the theoretical works
associated with stochastic approximations [5], stochastic algorithms that converge faster than t−1 is very surprising.

1 Problem Setup

Consider the standard finite sum optimization problem

F (x) :=
1

n

n∑
i=1

f(x; i) (1.1)

where f(·; i) : Rd → R is the i-th component function. The goal is to find the minimizer of F on a closed convex
set W ⊂ Rd.

min
x∈W

F (x) (1.2)

The vanilla SGD update can be written as

xt+1 = ΠW (xt − ηt∇f(xt; it)) with x0 = 0 (1.3)

where it is selected uniformly from [n] with replacement yielding Eit [∇f(xt; it)] = ∇F (xt), ηt > 0 is the step size
at t-th iteration, and ΠW is the Euclidean projection operator on the set W.
We can also consider a similar version of SGD where for every pass on the data, i.e., for every epoch, a random
permutation σk : [n] → [n] is chosen uniformly, and the i-th update of the k-th epoch is performed along negative
gradient of the σk(i+ 1)-th component of F . Concisely,

xki+1 = ΠW
(
xki − ηk,i∇f(xki ;σk(i+ 1))

)
∀ i ∈ [n] , k ∈ [K] and xk0 := xk−1n ,x1

0 = 0 (1.4)

where ηk,i > 0 is the step size of the i-th iterate of k-th epoch. This algorithm is nothing but SGD without
replacement where the algorithms passes over the data on a random permutations.

2 Related Works

There have been works which show that the convergence rates of SGD without replacement after K epochs behaves
as O (1/K2) [2], where the sub-optimality of SGD is known to be O (1/nK) and is known to be tight. [3] improves
upon the results of [2] showing a sub-optimality bound of O (1/n2K2 + 1/K3). However, these works require Hessian
Lipschitz, gradient Lipschitz and strong convexity assumptions on F . In contrast, SGD’s rate of O (1/nK) only
requires the strong convexity assumption.

This article refers to a recent work [4] which try to answer the question - Does SGD without replacement converge at
a faster rate than SGD with replacement for general smooth, strongly convex functions without the Hessian Lipschitz
condition?.

The domain of interest is when the number of passes over the data is small. [6] consider a single pass of the data
and show that for generalized linear models, the sub-optimality bounds are similar to that of SGD which is O (1/n)
and O (1/

√
n) for convex functions with and without strong convexity respectively.
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3 Discussion and Analysis

One of the major challenge is due to the fact that sampling without replacement leads to coupling between iterates
and the gradients, and in expectation, the update does not follow Gradient Descent (GD), i.e.,

E
[
∇f(xki ;σk(i+ 1)) | xki−1, σ(1 : i)

]
6= ∇F (xki ) ∀ i > 1 ∀ k ≥ 1 (3.1)

Let x∗ be the minimizer of F overW. We consider that the component functions are twice differentiable, uniformly
G Lipschitz and L smooth over W. Let us have following set of assumptions

1. Lipschitz continuity - ∃ G > 0 3 ‖∇f(x; i)‖2 ≤ G ∀x ∈ W, i ∈ [n].

2. Smoothness Gradient Lipschitz - ∃ L > 0 3 ‖∇f(x; i)−∇f(y; i)‖2 ≤ L ‖x− y‖2 ∀x,y ∈ W, i ∈ [n].

3. Strongly convex - ∃ µ > 0 3 F (y) ≥ F (x) + 〈∇F (x),y − x〉+ µ
2 ‖y − x‖22 ∀ x,y ∈ W.

The condition number of the problem (1.2) is defined as κ := L/µ. We also denote the distance of the initial point
x1
0 from the optimum by D :=

∥∥x1
0 − x∗

∥∥
2
.

3.1 Rates for GD and SGD

It has been shown that GD satisfies the below rates under the above discussed assumptions for K iterations

1. With assumption 1: O (GD/
√
K).

2. With assumptions 1 and 2: O
(
LD2

/K
)
.

3. With assumptions 1, 2 and 3: O
(
LD2e−K/κ

)
.

Similar tight rates have been shown for SGD as well. Here K passes over the data implies T = nK IFO calls.

1. With assumption 1: O (GD/
√
nK).

2. With assumption 1 and 3: O
(
G2
/µnK

)
.

3. With assumptions 1, 2 and 3: Variance reduction methods of SGD like SVRG, SAGA, SAG and SDCA achieve
faster rates of convergence.

None of these results apply to SGD without replacement due to the dependencies between iterates and the gradients.
[7] show that for a small enough step size, the distribution of iterates of SGD without replacement converge closer
to the optimum than the iterates of SGD.

3.2 Coupling and Wasserstein distance

The main problem with the classical analysis tools for SGD with replacement when applied to SGD without
replacement is that because the iterates are dependent, E

[
f(xki ;σk(i+ 1))

]
6= E

[
F (xki )

]
. However the two can

be shown to be comparable. It can also be shown that in expectation, SGD without replacement over one epoch
approximates one step of GD applied on F . Therefore K epochs of SGD without replacement would approximate
GD after K iterations.

xk+1
0 = xk0 − ηk

n−1∑
i=0

∇f(xki ;σk(i+ 1)) (3.2)

If xki ' xk0 , the above equation implies

xk+1
0 ' xk0 − ηk

n−1∑
i=0

∇f(xk0 ;σk(i+ 1)) = xk0 − nηk∇F (xk0) (3.3)

To show both the claims, consider two independent permutations σk and σ′k after k epochs of SGD without re-
placement. Starting from xk0 , denote the iterates of k-th epoch with σk as (xi(σk))

n
i=1 and with σ′k as (xi(σ

′
k))

n
i=1.

Therefore (xi(σk))
n
i=1 and (xi(σ

′
k))

n
i=1 are independent of each other and identically distributed. Which implies

E [f(xi(σ
′
k);σk(i+ 1))] = E

[
F (xki )

]
(3.4)
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Therefore we need to show that E [f(xi(σ
′
k);σk(i+ 1))] − E [f(xi(σk);σk(i+ 1))] ' 0. Since f(·; j) is Lipschitz

∀ j ∈ [n], so a bound on distance between xi(σk) and xi(σ
′
k) is required.

To prove the above claim, we need to set up some more notation and definitions. Let Di,k := L(xi(σk)) and

D(r)
i,k := L(xi(σk) | σk(i + 1) = r). Here L(X) denotes the distribution of the random variable X. Let Lipd(β)

denote the set of all β Lipschitz functions from Rd → R.

Definition 3.1. Let P and Q be two probability measures over Rd s.t. EX∼P
[
‖X‖22

]
<∞ and EY∼Q

[
‖Y ‖22

]
<∞.

Let X ∼ P and Y ∼ Q be random vectors defined on a common measure space, then the Wasserstein-1 and
Wasserstein-2 distance between P and Q are defined as

W1(P,Q) := inf
(X,Y ):

X∼P,Y∼Q

E [‖X − Y ‖2] , and (3.5)

W2(P,Q) := inf
(X,Y ):

X∼P,Y∼Q

√
E
[
‖X − Y ‖22

]
(3.6)

respectively. Here the infimum is over all joint distributions over (X,Y ) with prescribed marginals.

From Jensen’s inequality, we have W1(P,Q) ≤ W2(P,Q). There is a fundamental characterization of Wasserstein-1
distance from Kantorovich’s duality as

W1(P,Q) := sup
g∈Lipd(1)

E [g(X)]− E [g(Y )] (3.7)

We can now use the above definitions and characterizations to show that the approximation error∣∣E [F (xki )
]
− E [f(xi(σk);σk(i+ 1))]

∣∣ is bounded in terms of the average Wasserstein distance between Di,k and

D(r)
i,k .

∣∣E [F (xki )
]
− E [f(xi(σk);σk(i+ 1))]

∣∣ =

∣∣∣∣∣E
[

1

n

n∑
r=1

f(xi(σ
′
k); r)

]
− E

[
1

n

n∑
r=1

f(xi(σk); r) | σk(i+ 1) = r

]∣∣∣∣∣
≤ 1

n

n∑
r=1

|E [f(xi(σ
′
k); r)]− E [f(xi(σk); r) | σk(i+ 1) = r]|

≤ 1

n

n∑
r=1

sup
g∈Lipd(G)

(E [g(xi(σ
′
k))]− E [g(xi(σk)) | σk(i+ 1) = r])

=
G

n

n∑
r=1

W1(Di,k,D(r)
i,k )

≤ G

n

n∑
r=1

W2(Di,k,D(r)
i,k ) (3.8)

We are now left to bound W2(Di,k,D(r)
i,k ). From the definition of W2, we have

W2(Di,k,D(r)
i,k ) ≤

√
E
[
‖xi(σk)− xi(σ′k)‖2

2

]
(3.9)

such that xi(σk) ∼ Di,k and σ′k is such that σ′k(i+ 1) = r. Since (3.9) holds for all σ′k with this property, consider
the permutation which is obtained from σk by swapping at most one pair such that σ′k(i + 1) = r holds true. Let
j < i, and first assume σk(j + 1) 6= σ′k(j + 1), then

‖xj+1(σk)− xj+1(σ′k)‖2 = ‖ΠW (xj(σk)− ηk,i∇f(xj(σk);σk(j + 1)))−ΠW (xj(σ
′
k)− ηk,i∇f(xj(σ

′
k);σ′k(j + 1)))‖2

≤ ‖xj(σk)− xj(σ
′
k)− ηk,i (∇f(xj(σk);σk(j + 1))−∇f(xj(σ

′
k);σ′k(j + 1)))‖2

≤ ‖xj(σk)− xj(σ
′
k)‖2 + 2Gηk,i

≤ ‖xj(σk)− xj(σ
′
k)‖2 + 2Gηk,0
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If σk(j + 1) = σ′k(j + 1),

‖xj+1(σk)− xj+1(σ′k)‖22 = ‖ΠW (xj(σk)− ηk,i∇f(xj(σk);σk(j + 1)))−ΠW (xj(σ
′
k)− ηk,i∇f(xj(σ

′
k);σ′k(j + 1)))‖22

≤ ‖xj(σk)− xj(σ
′
k)− ηk,i (∇f(xj(σk);σk(j + 1))−∇f(xj(σ

′
k);σ′k(j + 1)))‖22

= ‖xj(σk)− xj(σ
′
k)‖22 − 2ηk,i 〈∇f(xj(σk);σk(j + 1))−∇f(xj(σ

′
k);σ′k(j + 1)),xj(σk)− xj(σ

′
k)〉

+ η2k,i ‖∇f(xj(σk);σk(j + 1))−∇f(xj(σ
′
k);σ′k(j + 1))‖22

≤ ‖xj(σk)− xj(σ
′
k)‖22

− (2ηk,i − Lη2k,i) 〈∇f(xj(σk);σk(j + 1))−∇f(xj(σ
′
k);σ′k(j + 1)),xj(σk)− xj(σ

′
k)〉

≤ ‖xj(σk)− xj(σ
′
k)‖22 (if ηk,0 ≤ 2/L, then (2ηk,i − Lη2k,i) ≥ 0)

=⇒ ‖xj+1(σk)− xj+1(σ′k)‖2 ≤ ‖xj(σk)− xj(σ
′
k)‖2 (3.10)

Since |{j < i | σk(j + 1) 6= σ′k(j + 1)}| ≤ 1, we have

‖xi(σk)− xi(σ
′
k)‖2 ≤ 2Gηk,0 (3.11)

Using (3.11) in (3.9) we have

W2(Di,k,D(r)
i,k ) ≤ 2Gηk,0 (3.12)

Using (3.12) in (3.8) we have ∣∣E [F (xki )
]
− E [f(xi(σk);σk(i+ 1))]

∣∣ ≤ 2G2ηk,0 (3.13)

thus proving the claim.
We have now seen that the iterates of SGD with and without replacement are close in sub-optimality. SGD without
replacement also has a property of variance reduction in some sense. We will now see that the iterates xki do not
move much when they are close to the optimum. Let x̂ ∈

{
xk0 ,x

∗}, which implies that it is independent of σk

∥∥xki+1 − x̂
∥∥2
2
≤
∥∥xki − x̂

∥∥2
2
− 2ηk,i

〈
∇f(xki ;σk(i+ 1)),xki − x̂

〉
+ η2k,iG

2

≤
∥∥xki − x̂

∥∥2
2

+ 2ηk,i
(
f(x̂;σk(i+ 1))− f(xki ;σk(i+ 1))

)
+ η2k,iG

2

=⇒ E
[∥∥xki+1 − x̂

∥∥2
2

]
≤ E

[∥∥xki − x̂
∥∥2
2

]
+ η2k,iG

2 + 2ηk,iE
[
f(x̂;σk(i+ 1))− f(xki ;σk(i+ 1))

]
= E

[∥∥xki − x̂
∥∥2
2

]
+ 2ηk,iE

[
F (x̂)− f(xki ;σk(i+ 1))

]
+ η2k,iG

2

= E
[∥∥xki − x̂

∥∥2
2

]
+ 2ηk,iE

[
F (x̂)− F (xki )

]
+ 2ηk,iE

[
F (xki )− f(xki ;σk(i+ 1))

]
+ η2k,iG

2

≤ E
[∥∥xki − x̂

∥∥2
2

]
+ 2ηk,iE

[
F (x̂)− F (xki )

]
+ 4ηk,0ηk,iG

2 + η2k,iG
2 (Using (3.13))

≤ E
[∥∥xki − x̂

∥∥2
2

]
+ 2ηk,0E

[
F (x̂)− F (xki )

]
+ 5η2k,0G

2

≤ E
[∥∥xki − x̂

∥∥2
2

]
+ 2ηk,0E [F (x̂)− F (x∗)] + 5η2k,0G

2 (3.14)

For x̂ = xk0 , we have

E
[∥∥xki − xk0

∥∥2
2

]
≤ E

[∥∥xki−1 − xk0
∥∥2
2

]
+ 2ηk,0E

[
F (xk0)− F (x∗)

]
+ 5η2k,0G

2

≤ 5iη2k,0G
2 + 2iηk,0E

[
F (xk0)− F (x∗)

]
(3.15)

And for x̂ = x∗, we have

E
[∥∥xki − x∗

∥∥2
2

]
≤ E

[∥∥xki−1 − x∗
∥∥2
2

]
+ 5η2k,0G

2

≤ E
[∥∥xk0 − x∗

∥∥2
2

]
+ 5iη2k,0G

2 (3.16)
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4 Convergence analysis

Theorem 4.1. Suppose F satisfies assumptions 1-3. Fix l > 0, and let the number of epochs K be such that

K ≥ 32lκ2 log(nK). Let ηk,i = η := 4l log(nK)
µnK . The the following holds for the tail average x̂ := 1

K−dK/2e+1

K∑
k=dK/2e

xk0

of the iterates:

E [F (x̂)]− F (x∗) ≤ O
(
µD2

(nK)l

)
+O

(
κ2G2

µ

(log(nK))2

nK2

)
(4.1)

Proof. The update of SGD without replacement for the k-th epochs can be written as

xk+1
0 = xk0 − η

n−1∑
i=0

∇f(xki ;σk(i+ 1)) (4.2)

Subtracting x∗ on both sides and taking the squared Euclidean norm, we get

∥∥xk+1
0 − x∗

∥∥2
2

=
∥∥xk0 − x∗

∥∥2
2
− 2η

n−1∑
i=0

〈
∇f(xki ;σk(i+ 1)),xk0 − x∗

〉
+ η2

∥∥∥∥∥
n−1∑
i=0

∇f(xki ;σk(i+ 1))

∥∥∥∥∥
2

2

=
∥∥xk0 − x∗

∥∥2
2
− 2nη

〈
∇F (xk0),xk0 − x∗

〉
− 2η

n−1∑
i=0

〈
∇f(xki ;σk(i+ 1))−∇F (xk0),xk0 − x∗

〉
+ η2

∥∥∥∥∥
n−1∑
i=0

∇f(xki ;σk(i+ 1))

∥∥∥∥∥
2

2

≤ (1− nηµ)
∥∥xk0 − x∗

∥∥2
2
− 2nη

(
F (xk0)− F (x∗)

)
− 2η

n−1∑
i=0

〈
∇f(xki ;σk(i+ 1))−∇F (xk0),xk0 − x∗

〉
+ η2

∥∥∥∥∥
n−1∑
i=0

∇f(xki ;σk(i+ 1))

∥∥∥∥∥
2

2

(4.3)

We shall analyze terms of Equation (4.3) individually.

T1 := −2η

n−1∑
i=0

〈
∇f(xki ;σk(i+ 1))−∇F (xk0),xk0 − x∗

〉
= −2η

n−1∑
i=0

〈
∇f(xki ;σk(i+ 1))−∇f(xk0 ;σk(i+ 1)),xk0 − x∗

〉
=⇒ E [T1] = −2ηE

[
n−1∑
i=0

〈
∇f(xki ;σk(i+ 1))−∇f(xk0 ;σk(i+ 1)),xk0 − x∗

〉]

≤ 2ηL

n−1∑
i=0

E
[∥∥xki − xk0

∥∥
2

∥∥xk0 − x∗
∥∥
2

]
≤ 2ηL

n−1∑
i=0

√
E
[∥∥xki − xk0

∥∥2
2

]√
E
[∥∥xk0 − x∗

∥∥2
2

]
≤ 2ηLn

√
E
[∥∥xki − xk0

∥∥2
2

]√
5nη2G2 + 2nηE

[
F (xk0)− F (x∗)

]
≤ ηLn

µE
[∥∥xki − xk0

∥∥2
2

]
4L

+
4L(5nη2G2 + 2nηE

[
F (xk0)− F (x∗)

]
)

µ


=
ηµn

4
E
[∥∥xki − xk0

∥∥2
2

]
+ 20

L2η3n2G2

µ
+ 8

η2L2n2

n
E
[
F (xk0)− F (x∗)

]
(4.4)
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Now consider

T2 := η2

∥∥∥∥∥
n−1∑
i=0

∇f(xki ;σk(i+ 1))

∥∥∥∥∥
2

2

= η2

∥∥∥∥∥
n−1∑
i=0

∇f(xki ;σk(i+ 1))−∇f(x∗;σk(i+ 1))

∥∥∥∥∥
2

2

≤ η2
[
n−1∑
i=0

∥∥∇f(xki ;σk(i+ 1))−∇f(x∗;σk(i+ 1))
∥∥
2

]2

≤ η2L2

[
n−1∑
i=0

∥∥xki − x∗
∥∥
2

]2

= η2L2
n−1∑
i=0

n−1∑
j=0

∥∥xki − x∗
∥∥
2

∥∥xkj − x∗
∥∥
2

=⇒ E [T2] ≤ η2L2
n−1∑
i=0

n−1∑
j=0

E
[∥∥xki − x∗

∥∥
2

∥∥xkj − x∗
∥∥
2

]

≤ η2L2
n−1∑
i=0

n−1∑
j=0

√
E
[∥∥xki − x∗

∥∥2
2

]√
E
[∥∥xkj − x∗

∥∥
2

]
≤ η2L2n2

[
E
[∥∥xk0 − x∗

∥∥2
2

]
+ 5nη2G2

]
(4.5)

Plugging in (4.4) and Equation (4.5) in Equation (4.3) we get

E
[∥∥xk+1

0 − x∗
∥∥2
2

]
≤
(

1− 3nηµ

4
+ η2n2L2

)
E
[∥∥xk0 − x∗

∥∥2
2

]
− 2nη

(
1− 4ηnL2

µ

)
E
[
F (xk0)− F (x∗)

]
+

20L2η3n2G2

µ
+ 5η4L2G2n3 (4.6)

Since η = 4l log(nK)
µnK and K ≥ 32lκ2 log(nK), we have that

(
1− 3nηµ

4 + η2n2L2
)
≤
(
1− nηµ

2

)
and

(
1− 4ηnL2

µ

)
≥ 0.

Plugging these inequalities in (4.6) we have

E
[∥∥xk+1

0 − x∗
∥∥2
2

]
≤
(

1− nηµ

2

)
E
[∥∥xk0 − x∗

∥∥2
2

]
+

20L2η3n2G2

µ
+ 5η4L2G2n3

≤
(

1− nηµ

2

)k
E
[∥∥x1

0 − x∗
∥∥2
2

]
+

∞∑
t=0

(
1− nηµ

2

)t [20L2η3n2G2

µ
+ 5η4L2G2n3

]
≤ exp

(
−nkηµ

2

)
E
[∥∥x1

0 − x∗
∥∥2
2

]
+

40L2η2nG2

µ2
+

10η3L2G2n2

µ
(4.7)

With η = 4l log(nK)
µnK and k = K/2 Equation (4.7) becomes

E
[∥∥∥xK/20 − x∗

∥∥∥2
2

]
≤ 1

(nK)l
E
[∥∥x1

0 − x∗
∥∥2
2

]
+

40L2η2nG2

µ2
+

10η3L2G2n2

µ
(4.8)

From Equation (4.6) we also get

E
[∥∥xk+1

0 − x∗
∥∥2
2

]
≤ E

[∥∥xk0 − x∗
∥∥2
2

]
− nηE

[
F (xk0)− F (x∗)

]
+

20L2η3n2G2

µ
+ 5η4L2G2n3 (4.9)

Summing Equation (4.9) from k = K/2 to K, we get

nη

K∑
k=dK/2e

E
[
F (xk0)− F (x∗)

]
K − dK/2e+ 1

≤
E
[∥∥∥xK/20 − x∗

∥∥∥2
2

]
K − dK/2e+ 1

+
20L2η3n2G2

µ
+ 5η4L2G2n3 (4.10)
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From convexity of F , and using (4.8) in (4.10) we have

E [F (x̂)− F (x∗)] ≤ 2

nKη

E
[∥∥x1

0 − x∗
∥∥2
2

]
(nK)l

+
80L2ηG2

µ2K
+

20η2L2G2n

µK
+

20L2η2nG2

µ
+ 5η3L2G2n2

= O
(
µD2

(nK)l

)
+O

(
κ2G2

µ

(log(nK))2

nK2

)
(4.11)

From the above proof, we can trace back the source of the improvement to see that the variance reduction claim is
indeed crucial.
We see that ones K ∈ Ω

(
κ2
)
, the convergence rate for SGD without replacement gets strictly better than that of

SGD with replacement. Theorem 4.1 requires K ∈ Ω
(
κ2
)
, but the rather interesting regime is when the number

of epochs is relatively smaller. It can be shown that SGD without replacement is at least as good as SGD with
replacement for all K ∈ N.

Theorem 4.2. Suppose F satisfies Assumptions 1-3, and let ηk,i = η := min
(

2
L , 4l

log(nK)
µnK

)
for a fixed l > 0. Then

the tail average x̂ := 1
n(K−dK/2e+1)

K∑
k=dK/2e

n−1∑
i=0

xki satisfies

E [F (x̂)]− F (x∗) = O
(
µD2

(nK)l
+

LD2

(nK)l+1

)
+O

(
G2

µnK
log(nK) +

L2G2

µ3n2K2
(log nK)2

)
(4.12)

Proof. Writing the SGD without replacement update and taking Euclidean squared norm on both sides, we have∥∥xki+1 − x∗
∥∥2
2

=
∥∥xki − x∗

∥∥2
2
− 2η

〈
∇f(xki ;σk(i+ 1)),xki − x∗

〉
+ η2

∥∥∇f(xki ;σk(i+ 1))
∥∥2
2

≤
∥∥xki − x∗

∥∥2
2
− 2η

〈
∇f(xki ;σk(i+ 1)),xki − x∗

〉
+ η2G2

≤
∥∥xki − x∗

∥∥2
2
− 2η

〈
∇F (xki ),xki − x∗

〉
+ 2η

〈
∇F (xki )−∇f(xki ;σk(i+ 1)),xki − x∗

〉
+ η2G2

≤ (1− ηµ)
∥∥xki − x∗

∥∥2
2
− 2η(F (xki )− F (x∗)) + 2η

〈
∇F (xki )−∇f(xki ;σk(i+ 1)),xki − x∗

〉
+ η2G2

(4.13)

Define Ri,k :=
〈
∇F (xki )−∇f(xki ;σk(i+ 1)),xki − x∗

〉
.

Ri,k =
1

n

n−1∑
r=0

〈
∇f(xki ; r),xki − x∗

〉
−
〈
∇f(xki ;σk(i+ 1)),xki − x∗

〉
=⇒ E [Ri,k] =

1

n

n−1∑
r=0

E
[〈
∇f(xki ; r),xki − x∗

〉]
− 1

n

n−1∑
r=0

E
[〈
∇f(xki ; r),xki − x∗

〉
| σk(i+ 1) = r

]
(4.14)

The above equality not just holds for (xki ,x
k
i | σk(i + 1)) but also for any other pair of random variables (Y,Zr)

which follow marginal distributions Di,k and D(r)
i,k respectively. The equality doesn’t depend of their coupling so we

can take an advantage of it.

∴ E [Ri,k] =
1

n

n−1∑
r=0

E [〈∇f(Y ; r), Y − x∗〉 − 〈∇f(Zr; r), Zr − x∗〉]

=
1

n

n−1∑
r=0

E [〈∇f(Y ; r)−∇f(Zr; r), Y − x∗〉+ 〈∇f(Zr; r), Y − Zr〉]

≤ 1

n

n−1∑
r=0

E [L ‖Y − x∗‖2 ‖Zr − Y ‖2 +G ‖Zr − Y ‖2]

≤ 1

n

n−1∑
r=0

L

√
E
[
‖Y − x∗‖22

]√
E
[
‖Zr − Y ‖22

]
+GE [‖Zr − Y ‖2] (4.15)
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Inequality (4.15) holds for all couplings between Y and Zr, so we can take an infimum on both sides to have

E [Ri,k] ≤ 1

n

n−1∑
r=0

LW2

(
Di,k,D(r)

i,k

)√
E
[
‖Zr − Y ‖22

]
+GW2

(
Di,k,D(r)

i,k

)
≤ 1

n

n−1∑
r=0

L2

µ

[
W2

(
Di,k,D(r)

i,k

)]2
+
µ

4
E
[∥∥xki − x∗

∥∥2
2

]
+GW2

(
Di,k,D(r)

i,k

)
(AM-GM inequality)

≤ 4L2G2η2

µ
+
µ

4
E
[∥∥xki − x∗

∥∥2
2

]
+ 2G2η (4.16)

Using Equation (4.16) in Equation (4.13), we get

E
[∥∥xki+1 − x∗

∥∥2
2

]
≤
(

1− ηµ

2

)
E
[∥∥xki − x∗

∥∥2
2

]
− 2ηE

[
F (xki )− F (x∗)

]
+

8L2G2η3

µ
+ 4G2η2

≤
(

1− ηµ

2

)
E
[∥∥xki − x∗

∥∥2
2

]
+

8L2G2η3

µ
+ 4G2η2

≤
(

1− ηµ

2

)nk ∥∥x1
0 − x∗

∥∥2
2

+

∞∑
t=0

(
1− ηµ

2

)t [8L2G2η3

µ
+ 4G2η2

]
≤ exp

(
−nηkµ

2

)
D2 +

16L2G2η2

µ2
+

8G2η

µ
(4.17)

For k ≥ K
2 , (4.17) becomes

E
[∥∥xki+1 − x∗

∥∥2
2

]
≤ D2

(nK)l
+

16L2G2η2

µ2
+

8G2η

µ
(4.18)

Separately we also have∥∥xki+1 − x∗
∥∥2
2

=
∥∥xki − x∗

∥∥2
2
− 2η

〈
∇f(xki ;σk(i+ 1)),xki − x∗

〉
+ η2

∥∥∇f(xki ;σk(i+ 1))
∥∥2
2

≤
∥∥xki − x∗

∥∥2
2
− 2η

〈
∇f(xki ;σk(i+ 1)),xki − x∗

〉
+ η2G2

E
[∥∥xki+1 − x∗

∥∥2
2

]
≤ E

[∥∥xki − x∗
∥∥2
2

]
+ η2G2 − 2ηE

[
F (xki )− f(x∗;σk(i+ 1))

]
+ 2ηE

[
F (xki )− f(xki ;σk(i+ 1))

]
≤ E

[∥∥xki − x∗
∥∥2
2

]
− 2ηE

[
F (xki )− F (x∗)

]
+ 5η2G2 (Using (3.13)) (4.19)

Summing Equation (4.19) for 0 ≤ i ≤ n− 1,
⌈
K
2 ≤ k ≤ K

⌉
, we get

E [F (x̂)− F (x∗)] ≤ 1

n (K − dK/2e+ 1)

K∑
k=dK/2e

n−1∑
i=0

E
[
F (xki )− F (x∗)

]
≤ 1

2nη (K − dK/2e+ 1)
E
[∥∥∥xdK/2e0 − x∗

∥∥∥2
2

]
+

5

2
ηG2 (4.20)

Using (4.20) in (4.18) we get

E [F (x̂)− F (x∗)] ≤ 1

nηK

[
D2

(nK)l
+

16L2G2η2

µ2
+

8G2η

µ

]
+

5

2
ηG2

(4.21)

Using 1
η ≤

L
2 + nKµ

4l log(nK) and η = 4l log(nK)
µnK , we finally get

E [F (x̂)− F (x∗)] ≤ O
(

LD2

(nK)l+1
+

µD2

(nK)l

)
+O

(
G2 log(nK)

µnK
+
L2G2 log(nK)

µ3n2K2

)
(4.22)

8



It is to note that the above theorem is even true for small K. In the regime where nK > κ2, the rate essentially

boils down to O
(
G2 log(nK)

µnK

)
which matches the rate of SGD with replacement up to log factors.

When there is no strong convexity, it can be again shown that SGD without replacement is at least as good as SGD
with replacement.

Theorem 4.3. If F satisfies Assumptions 1-2, the step size η = min
(

2
L ,

D
G
√
nK

)
, the average iterate of SGD

without replacement x̂ := 1
nK

K∑
k=1

n−1∑
i=0

xki satisfies

E [F (x̂)− F (x∗)] ≤ D2L

4nK
+

3GD√
nK

(4.23)

Proof. Summing Equation (4.19) from k = 1 to K and i = 0 to n− 1, we have

E [F (x̂)− F (x∗)] ≤ 1

nK

K∑
k=1

n−1∑
i=0

(
F (xki )− F (x∗)

)
≤ E

[
D2

2ηnK

]
+

5

2
ηG2

≤ D2

2nK
max

(
L

2
,
G
√
nK

D

)
+

5G2

2
min

(
2

L
,

D

G
√
nK

)

≤ D2

2nK

(
L

2
+
G
√
nK

D

)
+

5G2

2

D

G
√
nK

≤ D2L

4nK
+

3GD√
nK

(4.24)
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[1] Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. 2009.
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