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For the sake of abstractness and general applicability, we will consider that we are in a general field F which for
example can be R, C etc. Our space of vectors, is the vector space V, which in general can be subspace of Fd for
some d ∈ N for example.

1 Dual space

Definition 1.1 (Dual space). The dual space V∗ of the vector space V, is the set of all linear transformations f
from V to F denoted as V∗ := L (V,F).

Definition 1.2 (Linear functional). An element f : V → F of V∗ is called a linear functional, which takes in a
vector x ∈ V, and outputs an element in F.

Note that if f, g ∈ V∗, then αf+βg is also in V∗ for α, β ∈ F and would be defined as (αf+βg)(x) = αf(x)+βg(x)
for all x ∈ V. Let us look at a few examples :

1. If V = Pn is the space of all univariate polynomial over the field R with degree n ∈ N, then f defined as
f(p) = p(1) + 2p′(0), is a linear functional contained in V∗ = L (Pn,R).

2. If V = Rm×n be the space of all real matrices of size m × n, then f defined as f(M) = Tr [M], is a linear
functional contained in V∗ = L (Rm×n,R).

3. If V = C ([−π, π]) is the space of all real valued continuous functions on [−π, π], then f defined as f(g) =∫ π
−π g(x) cos(2x)dx, is a linear functional contained in V∗ = L ([−π, π] ,R). This function essentially outputs

the 2nd Fourier coefficient of its input function.

2 Dual basis

Let V∗ be a finite dimensional vector space, and β = {vi}ni=1 be a basis of V. Therefore, for to determine the action
of any linear functional f ∈ V∗, it is enough to know it action on the basis vectors {vi}ni=1, i.e., it is enough to know
what {f(vi) ∈ F}ni=1 are.

Definition 2.1 (Dual basis). If V is finite dimensional and β = {vi}ni=1 is a basis of V, then β∗ = {fi}ni=1, the set
of functionals defined by fi(vj) = δij ∀ i, j ∈ [n], is the corresponding basis of V∗ also known as a dual basis of V.

To verify that β∗ is indeed a basis of V∗, we just need to check the following

1. β∗ is a linearly independent set of linear functionals, i.e., if
n∑
i=1

aifi = f0 for some set {aj ∈ F}nj=1, then

aj = 0 ∀ j ∈ [n], where is f0 is the 0 functional. To verify this, we just need to check this condition for all

the basis elements of V, v ∈ β, which gives us
n∑
i=1

aifi(vj) = 0 ∀ j ∈ [n], and implies that aj = 0 ∀ j ∈ [n]

establishing the linear independence of the set β∗.

2. β∗ spans V∗, i.e., for any f ∈ V∗, we have some set of elements {aj ∈ F}nj=1 such that f(v) =
n∑
i=1

aifi(v) ∀ v ∈ V.

To check this, we evaluate f on basis vectors vj ∈ β for j ∈ [n], which gives us f(vj) =
n∑
i=1

aifi(vj) =
n∑
i=1

aiδij =
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aj ∀ j ∈ [n], or, aj = f(vj) ∀ j ∈ [n]. Therefore, if f is in the span of β∗, then it must be the case that the

coefficients aj = f(vj) ∀ j ∈ [n]. Now, if g :=
n∑
i=1

f(vi)fi, then to show that g = f , it is enough to show that

they agree on the basis vectors {vj} of V, that is f(vi) = g(vi). This is simply true by the construction of
{fi}ni=1, therefore β∗ spans V∗

This establishes that β∗ = {fi} is indeed a basis of V∗, and any f ∈ V∗ can be decomposed into the basis of V∗ as

f =

n∑
i=1

f(vi)fi (2.1)

where β = {vi} is the basis of V. The existence of dual basis β∗ and the relation with β also shows that V and V∗
are isomorphic.

3 Transpose

The existence of the dual basis β∗ helps us define the concept of transpose in linear algebra which is extensively
used application.

Definition 3.1 (Transpose). Let T : V → W be a linear transformation from the vector space V to the vector
space W, then T> : W∗ → V∗ is a linear transformation from W∗ to V∗ that takes in a linear functional g ∈ W∗,
and outputs another linear functional T>(g) ∈ V∗ defined as T>(g)(x) = g (T (x)) ∀ x ∈ V.

x
T−→ T (x)

g∈W∗−−−−→ g(T (x)) ≡ x
T>(g)∈V∗−−−−−−−→ g(T (x))

V T−→ W g∈W∗−−−−→ F V T>(g)∈V∗−−−−−−−→ F

Theorem 3.2. Let T : V → W be a linear transformation from vector space V to vector space W. Let β = {vi}ni=1

and β∗ = {fi}ni=1 be the basis of V and V∗ respectively, and γ = {wj}mj=1 and γ∗ = {gj}mj=1 be the basis of W and

W∗ respectively. Let A = [T ]
γ
β be the matrix which transforms a vector in V to a vector in W. Then

[
T>
]β∗
γ∗

= A>.

Proof. The matrix of
[
T>
]β∗
γ∗

takes in an element of W∗ represented in its basis γ∗, and outputs an element in V∗

represented in its basis β∗. Therefore, it is sufficient to represent every element in
{
T>(gj)

}m
j=1

in the basis β∗ of

V∗. Since any vector f in V∗ can be expressed as a linear combination of the basis vectors β∗ like in Equation (2.1),
we have

T>(gj) =

n∑
i=1

T>(gj)(vi)fi

=

n∑
i=1

gj(T (vi))fi (3.1)

Therefore, the (i, j)-th element of the matrix
[
T>
]β∗
γ∗

is gj(T (vi)). Now, the elements of the matrix [T ]
γ
β are the

representations of the basis vectors β of V, in the basis vectors γ of W. Therefore we have,

T (vi) =

m∑
k=1

Akiwk

=⇒ gj(T (vi)) = gj

(
m∑
k=1

Akiwk

)

=

m∑
k=1

Akigj(wk) (∵ g is a linear functional)

= Aji (∵ gj(wk) = δjk) (3.2)
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Using Equation (3.2) in Equation (3.1), we get

T>(gj) =

n∑
i=1

Ajifi (3.3)

which shows us that the (i, j)-th element of the matrix
[
T>
]β∗
γ∗

is nothing but the (j, i)-th element of A, which

implies that the matrix
[
T>
]β∗
γ∗

= A>.

4 Double dual

If V is a vector space, then its dual space V∗ is also a vector space. We can again define the set of all linear
transformations from V∗ to F as its dual space V∗∗ = L (V∗,F), which makes it the double dual space of V. Unlike
V∗ where we needed to define basis, there is an elegant way to go from V to V∗∗ via an isomorphism Ψ. If x ∈ V,
and x̂ = Ψ(x) ∈ V∗∗ acts on a linear functional f ∈ V∗ and evaluates f at x returning an element in the field F, i.e.,

f
x̂∈V∗∗−−−−→f(x)

V∗ x̂∈V∗∗−−−−→ F

Theorem 4.1. If V is a vector space and is finite dimensional, then Ψ : V → V∗∗ is an isomorphism.

Proof. First, we show that Ψ is linear. If x, y ∈ V, f ∈ V∗, and c ∈ F, then

Ψ(x+ cy)(f) = f(x+ cy)

= f(x) + cf(y)

= (Ψ(x) + cΨ(y))(f)

Next, we show that Ψ is one to one. Suppose x̂ = 0, the zero functional, then x = 0. Let β = {vi}ni=1, then

x =
n∑
i=1

aivi for some {ai ∈ F}. Therefore, if Ψ(x) = x̂ = 0, then

Ψ(x) = Ψ

(
n∑
i=1

aivi

)

=

n∑
i=1

aiΨ(vi)

=⇒ Ψ(x)(f) =

n∑
i=1

aiΨ(vi)(f) ∀ f ∈ V∗

=

n∑
i=1

aif(vi)

For f ∈ {fi}ni=1, we get ai = 0 ∀ i ∈ [n]. This implies that x =
n∑
i=1

aivi = 0. Since dim(V) = dim(V∗∗), we have

that Ψ is one to one and therefore an isomorphism.

The isomorphism between V and V∗∗, Ψ, allows us to map each element in V to a unique element in V∗∗.

5 The infinite sequence of dual spaces

We can continue thinking about the dual of the parent space and the there always will exist and isomorphism
between alternate dual spaces. Formally, Let us denote V(i+1)∗ :=

(
V(i)∗)∗ for all i ∈ N where V(0)∗ := V is a

finite dimensional vector space. Let Ψi be the isomorphism between V(i−1)∗ and V(i+1)∗. Then, in general define
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x̂(i+1) := Ψi

(
x̂(i−1)

)
for x̂(i−1) ∈ V(i−1)∗ when i is odd, and f̂ (i+1) := Ψi

(
f̂ (i−1)

)
for f̂ (i−1) ∈ V(i−1)∗ when i is an

even natural number, with x̂(0) := x ∈ V, and f̂ (1) := f ∈ V∗. Then by the property of these isomorphisms we have

x̂(i+1)
(
f̂ (i)
)

= Ψi

(
x̂(i−1)

)(
f̂ (i)
)

= f̂ (i)
(
x̂(i−1)

)
= . . . = x̂(2)

(
f̂ (1)

)
= x̂(2)(f)

when i is odd, and

f̂ (i+1)
(
x̂(i)
)

= Ψi

(
f̂ (i−1)

)(
x̂(i)
)

= x̂(i)
(
f̂ (i−1)

)
= . . . = f (1)(x) = f(x)

when i is an even natural number. However, note that x̂(2)(f) and f(x) are the same quantities in F, the difference
lies in the order of application of these linear functionals, which makes them the dual representation of each other.
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